from cmath import log import torch from torch import nn import sys from ldm.data.personalized import per_img_token_list from transformers import CLIPTokenizer from functools import partial DEFAULT_PLACEHOLDER_TOKEN = ["*"] PROGRESSIVE_SCALE = 2000 def get_clip_token_for_string(tokenizer, string): batch_encoding = tokenizer(string, truncation=True, max_length=77, return_length=True, return_overflowing_tokens=False, padding="max_length", return_tensors="pt") tokens = batch_encoding["input_ids"] assert torch.count_nonzero(tokens - 49407) == 2, f"String '{string}' maps to more than a single token. Please use another string" return tokens[0, 1] def get_bert_token_for_string(tokenizer, string): token = tokenizer(string) # assert torch.count_nonzero(token) == 3, f"String '{string}' maps to more than a single token. Please use another string" token = token[0, 1] return token def get_embedding_for_clip_token(embedder, token): return embedder(token.unsqueeze(0))[0, 0] class EmbeddingManager(nn.Module): def __init__( self, embedder, placeholder_strings=None, initializer_words=None, per_image_tokens=False, num_vectors_per_token=1, progressive_words=False, **kwargs ): super().__init__() self.string_to_token_dict = {} self.string_to_param_dict = nn.ParameterDict() self.initial_embeddings = nn.ParameterDict() # These should not be optimized self.progressive_words = progressive_words self.progressive_counter = 0 self.max_vectors_per_token = num_vectors_per_token if hasattr(embedder, 'tokenizer'): # using Stable Diffusion's CLIP encoder self.is_clip = True get_token_for_string = partial(get_clip_token_for_string, embedder.tokenizer) get_embedding_for_tkn = partial(get_embedding_for_clip_token, embedder.transformer.text_model.embeddings) token_dim = 1280 else: # using LDM's BERT encoder self.is_clip = False get_token_for_string = partial(get_bert_token_for_string, embedder.tknz_fn) get_embedding_for_tkn = embedder.transformer.token_emb token_dim = 1280 if per_image_tokens: placeholder_strings.extend(per_img_token_list) for idx, placeholder_string in enumerate(placeholder_strings): token = get_token_for_string(placeholder_string) if initializer_words and idx < len(initializer_words): init_word_token = get_token_for_string(initializer_words[idx]) with torch.no_grad(): init_word_embedding = get_embedding_for_tkn(init_word_token.cpu()) token_params = torch.nn.Parameter(init_word_embedding.unsqueeze(0).repeat(num_vectors_per_token, 1), requires_grad=True) self.initial_embeddings[placeholder_string] = torch.nn.Parameter(init_word_embedding.unsqueeze(0).repeat(num_vectors_per_token, 1), requires_grad=False) else: token_params = torch.nn.Parameter(torch.rand(size=(num_vectors_per_token, token_dim), requires_grad=True)) self.string_to_token_dict[placeholder_string] = token self.string_to_param_dict[placeholder_string] = token_params def forward( self, tokenized_text, embedded_text, ): b, n, device = *tokenized_text.shape, tokenized_text.device for placeholder_string, placeholder_token in self.string_to_token_dict.items(): placeholder_embedding = self.string_to_param_dict[placeholder_string].to(device) if self.max_vectors_per_token == 1: # If there's only one vector per token, we can do a simple replacement placeholder_idx = torch.where(tokenized_text == placeholder_token.to(device)) embedded_text[placeholder_idx] = placeholder_embedding else: # otherwise, need to insert and keep track of changing indices if self.progressive_words: self.progressive_counter += 1 max_step_tokens = 1 + self.progressive_counter // PROGRESSIVE_SCALE else: max_step_tokens = self.max_vectors_per_token num_vectors_for_token = min(placeholder_embedding.shape[0], max_step_tokens) placeholder_rows, placeholder_cols = torch.where(tokenized_text == placeholder_token.to(device)) if placeholder_rows.nelement() == 0: continue sorted_cols, sort_idx = torch.sort(placeholder_cols, descending=True) sorted_rows = placeholder_rows[sort_idx] for idx in range(len(sorted_rows)): row = sorted_rows[idx] col = sorted_cols[idx] new_token_row = torch.cat([tokenized_text[row][:col], placeholder_token.repeat(num_vectors_for_token).to(device), tokenized_text[row][col + 1:]], axis=0)[:n] new_embed_row = torch.cat([embedded_text[row][:col], placeholder_embedding[:num_vectors_for_token], embedded_text[row][col + 1:]], axis=0)[:n] embedded_text[row] = new_embed_row tokenized_text[row] = new_token_row return embedded_text def save(self, ckpt_path): torch.save({"string_to_token": self.string_to_token_dict, "string_to_param": self.string_to_param_dict}, ckpt_path) def load(self, ckpt_path): ckpt = torch.load(ckpt_path, map_location='cpu') self.string_to_token_dict = ckpt["string_to_token"] self.string_to_param_dict = ckpt["string_to_param"] def get_embedding_norms_squared(self): all_params = torch.cat(list(self.string_to_param_dict.values()), axis=0) # num_placeholders x embedding_dim param_norm_squared = (all_params * all_params).sum(axis=-1) # num_placeholders return param_norm_squared def embedding_parameters(self): return self.string_to_param_dict.parameters() def embedding_to_coarse_loss(self): loss = 0. num_embeddings = len(self.initial_embeddings) for key in self.initial_embeddings: optimized = self.string_to_param_dict[key] coarse = self.initial_embeddings[key].clone().to(optimized.device) loss = loss + (optimized - coarse) @ (optimized - coarse).T / num_embeddings return loss