# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654) from typing import Literal, Optional import numpy as np from pydantic import Field, validator from invokeai.app.util.misc import SEED_MAX, get_random_seed from .baseinvocation import ( BaseInvocation, InvocationContext, BaseInvocationOutput, ) class IntCollectionOutput(BaseInvocationOutput): """A collection of integers""" type: Literal["int_collection"] = "int_collection" # Outputs collection: list[int] = Field(default=[], description="The int collection") class RangeInvocation(BaseInvocation): """Creates a range""" type: Literal["range"] = "range" # Inputs start: int = Field(default=0, description="The start of the range") stop: int = Field(default=10, description="The stop of the range") step: int = Field(default=1, description="The step of the range") @validator("stop") def stop_gt_start(cls, v, values): if "start" in values and v <= values["start"]: raise ValueError("stop must be greater than start") return v def invoke(self, context: InvocationContext) -> IntCollectionOutput: return IntCollectionOutput( collection=list(range(self.start, self.stop, self.step)) ) class RandomRangeInvocation(BaseInvocation): """Creates a collection of random numbers""" type: Literal["random_range"] = "random_range" # Inputs low: int = Field(default=0, description="The inclusive low value") high: int = Field( default=np.iinfo(np.int32).max, description="The exclusive high value" ) size: int = Field(default=1, description="The number of values to generate") seed: int = Field( ge=0, le=SEED_MAX, description="The seed for the RNG (omit for random)", default_factory=get_random_seed, ) def invoke(self, context: InvocationContext) -> IntCollectionOutput: rng = np.random.default_rng(self.seed) return IntCollectionOutput( collection=list(rng.integers(low=self.low, high=self.high, size=self.size)) )