{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"colab": {
"name": "Stable_Diffusion_AI_Notebook.ipynb",
"provenance": [],
"collapsed_sections": [],
"private_outputs": true
},
"kernelspec": {
"name": "python3",
"display_name": "Python 3"
},
"language_info": {
"name": "python"
},
"accelerator": "GPU",
"gpuClass": "standard"
},
"cells": [
{
"cell_type": "markdown",
"source": [
"# Stable Diffusion AI Notebook\n",
"\n",
"
\n",
"#### Instructions:\n",
"1. Execute each cell in order to mount a Dream bot and create images from text.
\n",
"2. Once cells 1-8 were run correctly you'll be executing a terminal in cell #9, you'll to enter `pipenv run scripts/dream.py` command to run Dream bot.
\n",
"3. After launching dream bot, you'll see:
`Dream > ` in terminal.
Insert a command, eg. `Dream > Astronaut floating in a distant galaxy`, or type `-h` for help.\n",
"3. After completion you'll see your generated images in path `stable-diffusion/outputs/img-samples/`, you can also display images in cell #10.\n",
"4. To quit Dream bot use `q` command.
\n",
"---\n",
"Note: It takes some time to load, but after installing all dependencies you can use the bot all time you want while colab instance is up.
\n",
"Requirements: For this notebook to work you need to have [Stable-Diffusion-v-1-4](https://huggingface.co/CompVis/stable-diffusion-v-1-4-original) stored in your Google Drive, it will be needed in cell #6\n",
"##### For more details visit Github repository: [lstein/stable-diffusion](https://github.com/lstein/stable-diffusion)\n",
"---\n"
],
"metadata": {
"id": "ycYWcsEKc6w7"
}
},
{
"cell_type": "code",
"source": [
"#@title 1. Check current GPU assigned\n",
"!nvidia-smi -L\n",
"!nvidia-smi"
],
"metadata": {
"cellView": "form",
"id": "a2Z5Qu_o8VtQ"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"cellView": "form",
"id": "vbI9ZsQHzjqF"
},
"outputs": [],
"source": [
"#@title 2. Download stable-diffusion Repository\n",
"from os.path import exists\n",
"\n",
"if exists(\"/content/stable-diffusion/\")==True:\n",
" print(\"Already downloaded repo\")\n",
"else:\n",
" !git clone --quiet https://github.com/lstein/stable-diffusion.git # Original repo\n",
" %cd stable-diffusion/\n",
" !git checkout --quiet tags/release-1.09\n",
" "
]
},
{
"cell_type": "code",
"source": [
"#@title 3. Install Python 3.8 \n",
"%%capture --no-stderr\n",
"import gc\n",
"!apt-get -qq install python3.8\n",
"gc.collect()"
],
"metadata": {
"id": "daHlozvwKesj",
"cellView": "form"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"#@title 4. Install dependencies from file in a VirtualEnv\n",
"#@markdown Be patient, it takes ~ 5 - 7min
\n",
"%%capture --no-stderr\n",
"#Virtual environment\n",
"!pip install pipenv -q\n",
"!pip install colab-xterm\n",
"%load_ext colabxterm\n",
"!pipenv --python 3.8\n",
"!pipenv install -r requirements.txt --skip-lock\n",
"gc.collect()\n"
],
"metadata": {
"cellView": "form",
"id": "QbXcGXYEFSNB"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"#@title 5. Mount google Drive\n",
"from google.colab import drive\n",
"drive.mount('/content/drive')"
],
"metadata": {
"cellView": "form",
"id": "YEWPV-sF1RDM"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"#@title 6. Drive Path to model\n",
"#@markdown Path should start with /content/drive/path-to-your-file
\n",
"#@markdown Note: Model should be downloaded from https://huggingface.co
\n",
"#@markdown Lastest release: [Stable-Diffusion-v-1-4](https://huggingface.co/CompVis/stable-diffusion-v-1-4-original)\n",
"from os.path import exists\n",
"\n",
"model_path = \"\" #@param {type:\"string\"}\n",
"if exists(model_path)==True:\n",
" print(\"✅ Valid directory\")\n",
"else: \n",
" print(\"❌ File doesn't exist\")"
],
"metadata": {
"cellView": "form",
"id": "zRTJeZ461WGu"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"#@title 7. Symlink to model\n",
"\n",
"from os.path import exists\n",
"import os \n",
"\n",
"# Folder creation if it doesn't exist\n",
"if exists(\"/content/stable-diffusion/models/ldm/stable-diffusion-v1\")==True:\n",
" print(\"❗ Dir stable-diffusion-v1 already exists\")\n",
"else:\n",
" %mkdir /content/stable-diffusion/models/ldm/stable-diffusion-v1\n",
" print(\"✅ Dir stable-diffusion-v1 created\")\n",
"\n",
"# Symbolic link if it doesn't exist\n",
"if exists(\"/content/stable-diffusion/models/ldm/stable-diffusion-v1/model.ckpt\")==True:\n",
" print(\"❗ Symlink already created\")\n",
"else: \n",
" src = model_path\n",
" dst = '/content/stable-diffusion/models/ldm/stable-diffusion-v1/model.ckpt'\n",
" os.symlink(src, dst) \n",
" print(\"✅ Symbolic link created successfully\")"
],
"metadata": {
"id": "UY-NNz4I8_aG",
"cellView": "form"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"#@title 8. Load small ML models required\n",
"%%capture --no-stderr\n",
"!pipenv run scripts/preload_models.py\n",
"gc.collect()"
],
"metadata": {
"cellView": "form",
"id": "ChIDWxLVHGGJ"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"#@title 9. Run Terminal and Execute Dream bot\n",
"#@markdown Steps:
\n",
"#@markdown 1. Execute command `pipenv run scripts/dream.py` to run dream bot.
\n",
"#@markdown 2. After initialized you'll see `Dream>` line.
\n",
"#@markdown 3. Example text: `Astronaut floating in a distant galaxy`
\n",
"#@markdown 4. To quit Dream bot use: `q` command.
\n",
"\n",
"#Run from virtual env\n",
"\n",
"%xterm\n",
"gc.collect()"
],
"metadata": {
"id": "ir4hCrMIuUpl",
"cellView": "form"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"#@title 10. Show generated images\n",
"\n",
"import glob\n",
"import matplotlib.pyplot as plt\n",
"import matplotlib.image as mpimg\n",
"%matplotlib inline\n",
"\n",
"images = []\n",
"for img_path in glob.glob('/content/stable-diffusion/outputs/img-samples/*.png'):\n",
" images.append(mpimg.imread(img_path))\n",
"\n",
"# Remove ticks and labels on x-axis and y-axis both\n",
"\n",
"plt.figure(figsize=(20,10))\n",
"\n",
"columns = 5\n",
"for i, image in enumerate(images):\n",
" ax = plt.subplot(len(images) / columns + 1, columns, i + 1)\n",
" ax.axes.xaxis.set_visible(False)\n",
" ax.axes.yaxis.set_visible(False)\n",
" ax.axis('off')\n",
" plt.imshow(image)\n",
" gc.collect()\n",
"\n"
],
"metadata": {
"cellView": "form",
"id": "qnLohSHmKoGk"
},
"execution_count": null,
"outputs": []
}
]
}