"""Helper class for dealing with image generation arguments. The Args class parses both the command line (shell) arguments, as well as the command string passed at the invoke> prompt. It serves as the definitive repository of all the arguments used by Generate and their default values, and implements the preliminary metadata standards discussed here: https://github.com/lstein/stable-diffusion/issues/266 To use: opt = Args() # Read in the command line options: # this returns a namespace object like the underlying argparse library) # You do not have to use the return value, but you can check it against None # to detect illegal arguments on the command line. args = opt.parse_args() if not args: print('oops') sys.exit(-1) # read in a command passed to the invoke> prompt: opts = opt.parse_cmd('do androids dream of electric sheep? -H256 -W1024 -n4') # The Args object acts like a namespace object print(opt.model) You can set attributes in the usual way, use vars(), etc.: opt.model = 'something-else' do_something(**vars(a)) It is helpful in saving metadata: # To get a json representation of all the values, allowing # you to override any values dynamically j = opt.json(seed=42) # To get the prompt string with the switches, allowing you # to override any values dynamically j = opt.dream_prompt_str(seed=42) If you want to access the namespace objects from the shell args or the parsed command directly, you may use the values returned from the original calls to parse_args() and parse_cmd(), or get them later using the _arg_switches and _cmd_switches attributes. This can be useful if both the args and the command contain the same attribute and you wish to apply logic as to which one to use. For example: a = Args() args = a.parse_args() opts = a.parse_cmd(string) do_grid = args.grid or opts.grid To add new attributes, edit the _create_arg_parser() and _create_dream_cmd_parser() methods. **Generating and retrieving sd-metadata** To generate a dict representing RFC266 metadata: metadata = metadata_dumps(opt,) This will generate an RFC266 dictionary that can then be turned into a JSON and written to the PNG file. The optional seeds, weights, model_hash and postprocesser arguments are not available to the opt object and so must be provided externally. See how invoke.py does it. Note that this function was originally called format_metadata() and a wrapper is provided that issues a deprecation notice. To retrieve a (series of) opt objects corresponding to the metadata, do this: opt_list = metadata_loads(metadata) The metadata should be pulled out of the PNG image. pngwriter has a method retrieve_metadata that will do this, or you can do it in one swell foop with metadata_from_png(): opt_list = metadata_from_png('/path/to/image_file.png') """ import argparse from argparse import Namespace, RawTextHelpFormatter import pydoc import json import hashlib import os import re import sys import shlex import copy import base64 import functools import ldm.invoke.pngwriter from ldm.invoke.prompt_parser import split_weighted_subprompts SAMPLER_CHOICES = [ 'ddim', 'k_dpm_2_a', 'k_dpm_2', 'k_euler_a', 'k_euler', 'k_heun', 'k_lms', 'plms', ] PRECISION_CHOICES = [ 'auto', 'float32', 'autocast', 'float16', ] # is there a way to pick this up during git commits? APP_ID = 'invoke-ai/InvokeAI' APP_VERSION = 'v2.1.2' INITFILE = os.path.expanduser('~/.invokeai') class ArgFormatter(argparse.RawTextHelpFormatter): # use defined argument order to display usage def _format_usage(self, usage, actions, groups, prefix): if prefix is None: prefix = 'usage: ' # if usage is specified, use that if usage is not None: usage = usage % dict(prog=self._prog) # if no optionals or positionals are available, usage is just prog elif usage is None and not actions: usage = 'invoke>' elif usage is None: prog='invoke>' # build full usage string action_usage = self._format_actions_usage(actions, groups) # NEW usage = ' '.join([s for s in [prog, action_usage] if s]) # omit the long line wrapping code # prefix with 'usage:' return '%s%s\n\n' % (prefix, usage) class PagingArgumentParser(argparse.ArgumentParser): ''' A custom ArgumentParser that uses pydoc to page its output. It also supports reading defaults from an init file. ''' def print_help(self, file=None): text = self.format_help() pydoc.pager(text) def convert_arg_line_to_args(self, arg_line): return shlex.split(arg_line,comments=True) class Args(object): def __init__(self,arg_parser=None,cmd_parser=None): ''' Initialize new Args class. It takes two optional arguments, an argparse parser for switches given on the shell command line, and an argparse parser for switches given on the invoke> CLI line. If one or both are missing, it creates appropriate parsers internally. ''' self._arg_parser = arg_parser or self._create_arg_parser() self._cmd_parser = cmd_parser or self._create_dream_cmd_parser() self._arg_switches = self.parse_cmd('') # fill in defaults self._cmd_switches = self.parse_cmd('') # fill in defaults def parse_args(self): '''Parse the shell switches and store.''' try: sysargs = sys.argv[1:] if os.path.exists(INITFILE): print(f'>> Initialization file {INITFILE} found. Loading...') sysargs.insert(0,f'@{INITFILE}') else: print(f'>> Initialization file {INITFILE} not found. Applying default settings...') self._arg_switches = self._arg_parser.parse_args(sysargs) return self._arg_switches except Exception as e: print(f'An exception has occurred: {e}') return None def parse_cmd(self,cmd_string): '''Parse a invoke>-style command string ''' # handle the case in which the first token is a switch if cmd_string.startswith('-'): prompt = '' switches = cmd_string # handle the case in which the prompt is enclosed by quotes elif cmd_string.startswith('"'): a = shlex.split(cmd_string,comments=True) prompt = a[0] switches = shlex.join(a[1:]) else: # no initial quote, so get everything up to the first thing # that looks like a switch if cmd_string.startswith('-'): prompt = '' switches = cmd_string else: match = re.match('^(.+?)\s(--?[a-zA-Z].+)',cmd_string) if match: prompt,switches = match.groups() else: prompt = cmd_string switches = '' try: self._cmd_switches = self._cmd_parser.parse_args(shlex.split(switches,comments=True)) setattr(self._cmd_switches,'prompt',prompt) return self._cmd_switches except: return None def json(self,**kwargs): return json.dumps(self.to_dict(**kwargs)) def to_dict(self,**kwargs): a = vars(self) a.update(kwargs) return a # Isn't there a more automated way of doing this? # Ideally we get the switch strings out of the argparse objects, # but I don't see a documented API for this. def dream_prompt_str(self,**kwargs): """Normalized dream_prompt.""" a = vars(self) a.update(kwargs) switches = list() prompt = a['prompt'] prompt.replace('"','\\"') switches.append(prompt) switches.append(f'-s {a["steps"]}') switches.append(f'-S {a["seed"]}') switches.append(f'-W {a["width"]}') switches.append(f'-H {a["height"]}') switches.append(f'-C {a["cfg_scale"]}') if a['karras_max'] is not None: switches.append(f'--karras_max {a["karras_max"]}') if a['perlin'] > 0: switches.append(f'--perlin {a["perlin"]}') if a['threshold'] > 0: switches.append(f'--threshold {a["threshold"]}') if a['grid']: switches.append('--grid') if a['seamless']: switches.append('--seamless') if a['hires_fix']: switches.append('--hires_fix') # img2img generations have parameters relevant only to them and have special handling if a['init_img'] and len(a['init_img'])>0: switches.append(f'-I {a["init_img"]}') switches.append(f'-A {a["sampler_name"]}') if a['fit']: switches.append(f'--fit') if a['init_mask'] and len(a['init_mask'])>0: switches.append(f'-M {a["init_mask"]}') if a['init_color'] and len(a['init_color'])>0: switches.append(f'--init_color {a["init_color"]}') if a['strength'] and a['strength']>0: switches.append(f'-f {a["strength"]}') if a['inpaint_replace']: switches.append(f'--inpaint_replace') if a['text_mask']: switches.append(f'-tm {" ".join([str(u) for u in a["text_mask"]])}') else: switches.append(f'-A {a["sampler_name"]}') # facetool-specific parameters, only print if running facetool if a['facetool_strength']: switches.append(f'-G {a["facetool_strength"]}') switches.append(f'-ft {a["facetool"]}') if a["facetool"] == "codeformer": switches.append(f'-cf {a["codeformer_fidelity"]}') if a['outcrop']: switches.append(f'-c {" ".join([str(u) for u in a["outcrop"]])}') # esrgan-specific parameters if a['upscale']: switches.append(f'-U {" ".join([str(u) for u in a["upscale"]])}') # embiggen parameters if a['embiggen']: switches.append(f'--embiggen {" ".join([str(u) for u in a["embiggen"]])}') if a['embiggen_tiles']: switches.append(f'--embiggen_tiles {" ".join([str(u) for u in a["embiggen_tiles"]])}') # outpainting parameters if a['out_direction']: switches.append(f'-D {" ".join([str(u) for u in a["out_direction"]])}') # LS: slight semantic drift which needs addressing in the future: # 1. Variations come out of the stored metadata as a packed string with the keyword "variations" # 2. However, they come out of the CLI (and probably web) with the keyword "with_variations" and # in broken-out form. Variation (1) should be changed to comply with (2) if a['with_variations'] and len(a['with_variations'])>0: formatted_variations = ','.join(f'{seed}:{weight}' for seed, weight in (a["with_variations"])) switches.append(f'-V {formatted_variations}') if 'variations' in a and len(a['variations'])>0: switches.append(f'-V {a["variations"]}') return ' '.join(switches) def __getattribute__(self,name): ''' Returns union of command-line arguments and dream_prompt arguments, with the latter superseding the former. ''' cmd_switches = None arg_switches = None try: cmd_switches = object.__getattribute__(self,'_cmd_switches') arg_switches = object.__getattribute__(self,'_arg_switches') except AttributeError: pass if cmd_switches and arg_switches and name=='__dict__': return self._merge_dict( arg_switches.__dict__, cmd_switches.__dict__, ) try: return object.__getattribute__(self,name) except AttributeError: pass if not hasattr(cmd_switches,name) and not hasattr(arg_switches,name): raise AttributeError value_arg,value_cmd = (None,None) try: value_cmd = getattr(cmd_switches,name) except AttributeError: pass try: value_arg = getattr(arg_switches,name) except AttributeError: pass # here is where we can pick and choose which to use # default behavior is to choose the dream_command value over # the arg value. For example, the --grid and --individual options are a little # funny because of their push/pull relationship. This is how to handle it. if name=='grid': if cmd_switches.individual: return False else: return value_cmd or value_arg return value_cmd if value_cmd is not None else value_arg def __setattr__(self,name,value): if name.startswith('_'): object.__setattr__(self,name,value) else: self._cmd_switches.__dict__[name] = value def _merge_dict(self,dict1,dict2): new_dict = {} for k in set(list(dict1.keys())+list(dict2.keys())): value1 = dict1.get(k,None) value2 = dict2.get(k,None) new_dict[k] = value2 if value2 is not None else value1 return new_dict def _create_arg_parser(self): ''' This defines all the arguments used on the command line when you launch the CLI or web backend. ''' parser = PagingArgumentParser( description= """ Generate images using Stable Diffusion. Use --web to launch the web interface. Use --from_file to load prompts from a file path or standard input ("-"). Otherwise you will be dropped into an interactive command prompt (type -h for help.) Other command-line arguments are defaults that can usually be overridden prompt the command prompt. """, fromfile_prefix_chars='@', ) model_group = parser.add_argument_group('Model selection') file_group = parser.add_argument_group('Input/output') web_server_group = parser.add_argument_group('Web server') render_group = parser.add_argument_group('Rendering') postprocessing_group = parser.add_argument_group('Postprocessing') deprecated_group = parser.add_argument_group('Deprecated options') deprecated_group.add_argument('--laion400m') deprecated_group.add_argument('--weights') # deprecated model_group.add_argument( '--config', '-c', '-config', dest='conf', default='./configs/models.yaml', help='Path to configuration file for alternate models.', ) model_group.add_argument( '--model', help='Indicates which diffusion model to load (defaults to "default" stanza in configs/models.yaml)', ) model_group.add_argument( '--png_compression','-z', type=int, default=6, choices=range(0,9), dest='png_compression', help='level of PNG compression, from 0 (none) to 9 (maximum). Default is 6.' ) model_group.add_argument( '-F', '--full_precision', dest='full_precision', action='store_true', help='Deprecated way to set --precision=float32', ) model_group.add_argument( '--max_loaded_models', dest='max_loaded_models', type=int, default=2, help='Maximum number of models to keep in memory for fast switching, including the one in GPU', ) model_group.add_argument( '--free_gpu_mem', dest='free_gpu_mem', action='store_true', help='Force free gpu memory before final decoding', ) model_group.add_argument( '--precision', dest='precision', type=str, choices=PRECISION_CHOICES, metavar='PRECISION', help=f'Set model precision. Defaults to auto selected based on device. Options: {", ".join(PRECISION_CHOICES)}', default='auto', ) model_group.add_argument( '--safety_checker', action='store_true', help='Check for and blur potentially NSFW images', ) file_group.add_argument( '--from_file', dest='infile', type=str, help='If specified, load prompts from this file', ) file_group.add_argument( '--outdir', '-o', type=str, help='Directory to save generated images and a log of prompts and seeds. Default: outputs/img-samples', default='outputs/img-samples', ) file_group.add_argument( '--prompt_as_dir', '-p', action='store_true', help='Place images in subdirectories named after the prompt.', ) render_group.add_argument( '--fnformat', default='{prefix}.{seed}.png', type=str, help='Overwrite the filename format. You can use any argument as wildcard enclosed in curly braces. Default is {prefix}.{seed}.png', ) render_group.add_argument( '-s', '--steps', type=int, default=50, help='Number of steps' ) render_group.add_argument( '-W', '--width', type=int, help='Image width, multiple of 64', ) render_group.add_argument( '-H', '--height', type=int, help='Image height, multiple of 64', ) render_group.add_argument( '-C', '--cfg_scale', default=7.5, type=float, help='Classifier free guidance (CFG) scale - higher numbers cause generator to "try" harder.', ) render_group.add_argument( '--sampler', '-A', '-m', dest='sampler_name', type=str, choices=SAMPLER_CHOICES, metavar='SAMPLER_NAME', help=f'Set the default sampler. Supported samplers: {", ".join(SAMPLER_CHOICES)}', default='k_lms', ) render_group.add_argument( '-f', '--strength', type=float, help='img2img strength for noising/unnoising. 0.0 preserves image exactly, 1.0 replaces it completely', ) render_group.add_argument( '-T', '-fit', '--fit', action=argparse.BooleanOptionalAction, help='If specified, will resize the input image to fit within the dimensions of width x height (512x512 default)', ) render_group.add_argument( '--grid', '-g', action=argparse.BooleanOptionalAction, help='generate a grid' ) render_group.add_argument( '--embedding_path', type=str, help='Path to a pre-trained embedding manager checkpoint - can only be set on command line', ) # Restoration related args postprocessing_group.add_argument( '--no_restore', dest='restore', action='store_false', help='Disable face restoration with GFPGAN or codeformer', ) postprocessing_group.add_argument( '--no_upscale', dest='esrgan', action='store_false', help='Disable upscaling with ESRGAN', ) postprocessing_group.add_argument( '--esrgan_bg_tile', type=int, default=400, help='Tile size for background sampler, 0 for no tile during testing. Default: 400.', ) postprocessing_group.add_argument( '--gfpgan_model_path', type=str, default='./GFPGANv1.4.pth', help='Indicates the path to the GFPGAN model, relative to --gfpgan_dir.', ) postprocessing_group.add_argument( '--gfpgan_dir', type=str, default='./models/gfpgan', help='Indicates the directory containing the GFPGAN code.', ) web_server_group.add_argument( '--web', dest='web', action='store_true', help='Start in web server mode.', ) web_server_group.add_argument( '--web_develop', dest='web_develop', action='store_true', help='Start in web server development mode.', ) web_server_group.add_argument( "--web_verbose", action="store_true", help="Enables verbose logging", ) web_server_group.add_argument( "--cors", nargs="*", type=str, help="Additional allowed origins, comma-separated", ) web_server_group.add_argument( '--host', type=str, default='127.0.0.1', help='Web server: Host or IP to listen on. Set to 0.0.0.0 to accept traffic from other devices on your network.' ) web_server_group.add_argument( '--port', type=int, default='9090', help='Web server: Port to listen on' ) web_server_group.add_argument( '--gui', dest='gui', action='store_true', help='Start InvokeAI GUI', ) return parser # This creates the parser that processes commands on the invoke> command line def _create_dream_cmd_parser(self): parser = PagingArgumentParser( formatter_class=ArgFormatter, description= """ *Image generation* invoke> a fantastic alien landscape -W576 -H512 -s60 -n4 *postprocessing* !fix applies upscaling/facefixing to a previously-generated image. invoke> !fix 0000045.4829112.png -G1 -U4 -ft codeformer *History manipulation* !fetch retrieves the command used to generate an earlier image. invoke> !fetch 0000015.8929913.png invoke> a fantastic alien landscape -W 576 -H 512 -s 60 -A plms -C 7.5 !history lists all the commands issued during the current session. !NN retrieves the NNth command from the history *Model manipulation* !models -- list models in configs/models.yaml !switch -- switch to model named !import_model path/to/weights/file.ckpt -- adds a model to your config !edit_model -- edit a model's description !del_model -- delete a model """ ) render_group = parser.add_argument_group('General rendering') img2img_group = parser.add_argument_group('Image-to-image and inpainting') inpainting_group = parser.add_argument_group('Inpainting') outpainting_group = parser.add_argument_group('Outpainting and outcropping') variation_group = parser.add_argument_group('Creating and combining variations') postprocessing_group = parser.add_argument_group('Post-processing') special_effects_group = parser.add_argument_group('Special effects') deprecated_group = parser.add_argument_group('Deprecated options') render_group.add_argument( '--prompt', default='', help='prompt string', ) render_group.add_argument( '-s', '--steps', type=int, help='Number of steps' ) render_group.add_argument( '-S', '--seed', type=int, default=None, help='Image seed; a +ve integer, or use -1 for the previous seed, -2 for the one before that, etc', ) render_group.add_argument( '-n', '--iterations', type=int, default=1, help='Number of samplings to perform (slower, but will provide seeds for individual images)', ) render_group.add_argument( '-W', '--width', type=int, help='Image width, multiple of 64', ) render_group.add_argument( '-H', '--height', type=int, help='Image height, multiple of 64', ) render_group.add_argument( '-C', '--cfg_scale', type=float, help='Classifier free guidance (CFG) scale - higher numbers cause generator to "try" harder.', ) render_group.add_argument( '--threshold', default=0.0, type=float, help='Latent threshold for classifier free guidance (CFG) - prevent generator from "trying" too hard. Use positive values, 0 disables.', ) render_group.add_argument( '--perlin', default=0.0, type=float, help='Perlin noise scale (0.0 - 1.0) - add perlin noise to the initialization instead of the usual gaussian noise.', ) render_group.add_argument( '--fnformat', default='{prefix}.{seed}.png', type=str, help='Overwrite the filename format. You can use any argument as wildcard enclosed in curly braces. Default is {prefix}.{seed}.png', ) render_group.add_argument( '--grid', '-g', action=argparse.BooleanOptionalAction, help='generate a grid' ) render_group.add_argument( '-i', '--individual', action='store_true', help='override command-line --grid setting and generate individual images' ) render_group.add_argument( '-x', '--skip_normalize', action='store_true', help='Skip subprompt weight normalization', ) render_group.add_argument( '-A', '-m', '--sampler', dest='sampler_name', type=str, choices=SAMPLER_CHOICES, metavar='SAMPLER_NAME', help=f'Switch to a different sampler. Supported samplers: {", ".join(SAMPLER_CHOICES)}', ) render_group.add_argument( '-t', '--log_tokenization', action='store_true', help='shows how the prompt is split into tokens' ) render_group.add_argument( '--outdir', '-o', type=str, help='Directory to save generated images and a log of prompts and seeds', ) render_group.add_argument( '--hires_fix', action='store_true', dest='hires_fix', help='Create hires image using img2img to prevent duplicated objects' ) render_group.add_argument( '--save_intermediates', type=int, default=0, dest='save_intermediates', help='Save every nth intermediate image into an "intermediates" directory within the output directory' ) render_group.add_argument( '--png_compression','-z', type=int, default=6, choices=range(0,10), dest='png_compression', help='level of PNG compression, from 0 (none) to 9 (maximum). [6]' ) render_group.add_argument( '--karras_max', type=int, default=None, help="control the point at which the K* samplers will shift from using the Karras noise schedule (good for low step counts) to the LatentDiffusion noise schedule (good for high step counts). Set to 0 to use LatentDiffusion for all step values, and to a high value (e.g. 1000) to use Karras for all step values. [29]." ) img2img_group.add_argument( '-I', '--init_img', type=str, help='Path to input image for img2img mode (supersedes width and height)', ) img2img_group.add_argument( '-tm', '--text_mask', nargs='+', type=str, help='Use the clipseg classifier to generate the mask area for inpainting. Provide a description of the area to mask ("a mug"), optionally followed by the confidence level threshold (0-1.0; defaults to 0.5).', default=None, ) img2img_group.add_argument( '--init_color', type=str, help='Path to reference image for color correction (used for repeated img2img and inpainting)' ) img2img_group.add_argument( '-T', '-fit', '--fit', action='store_true', help='If specified, will resize the input image to fit within the dimensions of width x height (512x512 default)', ) img2img_group.add_argument( '-f', '--strength', type=float, help='img2img strength for noising/unnoising. 0.0 preserves image exactly, 1.0 replaces it completely', ) inpainting_group.add_argument( '-M', '--init_mask', type=str, help='Path to input mask for inpainting mode (supersedes width and height)', ) inpainting_group.add_argument( '--invert_mask', action='store_true', help='Invert the mask', ) inpainting_group.add_argument( '-r', '--inpaint_replace', type=float, default=0.0, help='when inpainting, adjust how aggressively to replace the part of the picture under the mask, from 0.0 (a gentle merge) to 1.0 (replace entirely)', ) outpainting_group.add_argument( '-c', '--outcrop', nargs='+', type=str, metavar=('direction','pixels'), help='Outcrop the image with one or more direction/pixel pairs: e.g. -c top 64 bottom 128 left 64 right 64', ) outpainting_group.add_argument( '--force_outpaint', action='store_true', default=False, help='Force outpainting if you have no inpainting mask to pass', ) outpainting_group.add_argument( '--seam_size', type=int, default=0, help='When outpainting, size of the mask around the seam between original and outpainted image', ) outpainting_group.add_argument( '--seam_blur', type=int, default=0, help='When outpainting, the amount to blur the seam inwards', ) outpainting_group.add_argument( '--seam_strength', type=float, default=0.7, help='When outpainting, the img2img strength to use when filling the seam. Values around 0.7 work well', ) outpainting_group.add_argument( '--seam_steps', type=int, default=10, help='When outpainting, the number of steps to use to fill the seam. Low values (~10) work well', ) outpainting_group.add_argument( '--tile_size', type=int, default=32, help='When outpainting, the tile size to use for filling outpaint areas', ) postprocessing_group.add_argument( '-ft', '--facetool', type=str, default='gfpgan', help='Select the face restoration AI to use: gfpgan, codeformer', ) postprocessing_group.add_argument( '-G', '--facetool_strength', '--gfpgan_strength', type=float, help='The strength at which to apply the face restoration to the result.', default=0.0, ) postprocessing_group.add_argument( '-cf', '--codeformer_fidelity', type=float, help='Used along with CodeFormer. Takes values between 0 and 1. 0 produces high quality but low accuracy. 1 produces high accuracy but low quality.', default=0.75 ) postprocessing_group.add_argument( '-U', '--upscale', nargs='+', type=float, help='Scale factor (1, 2, 3, 4, etc..) for upscaling final output followed by upscaling strength (0-1.0). If strength not specified, defaults to 0.75', default=None, ) postprocessing_group.add_argument( '--save_original', '-save_orig', action='store_true', help='Save original. Use it when upscaling to save both versions.', ) postprocessing_group.add_argument( '--embiggen', '-embiggen', nargs='+', type=float, help='Arbitrary upscaling using img2img. Provide scale factor (0.75), optionally followed by strength (0.75) and tile overlap proportion (0.25).', default=None, ) postprocessing_group.add_argument( '--embiggen_tiles', '-embiggen_tiles', nargs='+', type=int, help='For embiggen, provide list of tiles to process and replace onto the image e.g. `1 3 5`.', default=None, ) special_effects_group.add_argument( '--seamless', action='store_true', help='Change the model to seamless tiling (circular) mode', ) special_effects_group.add_argument( '--seamless_axes', default=['x', 'y'], type=list[str], help='Specify which axes to use circular convolution on.', ) variation_group.add_argument( '-v', '--variation_amount', default=0.0, type=float, help='If > 0, generates variations on the initial seed instead of random seeds per iteration. Must be between 0 and 1. Higher values will be more different.' ) variation_group.add_argument( '-V', '--with_variations', default=None, type=str, help='list of variations to apply, in the format `seed:weight,seed:weight,...' ) render_group.add_argument( '--use_mps_noise', action='store_true', dest='use_mps_noise', help='Simulate noise on M1 systems to get the same results' ) deprecated_group.add_argument( '-D', '--out_direction', nargs='+', type=str, metavar=('direction', 'pixels'), help='Older outcropping system. Direction to extend the given image (left|right|top|bottom). If a distance pixel value is not specified it defaults to half the image size' ) return parser def format_metadata(**kwargs): print(f'format_metadata() is deprecated. Please use metadata_dumps()') return metadata_dumps(kwargs) def metadata_dumps(opt, seeds=[], model_hash=None, postprocessing=None): ''' Given an Args object, returns a dict containing the keys and structure of the proposed stable diffusion metadata standard https://github.com/lstein/stable-diffusion/discussions/392 This is intended to be turned into JSON and stored in the "sd ''' # top-level metadata minus `image` or `images` metadata = { 'model' : 'stable diffusion', 'model_id' : opt.model, 'model_hash' : model_hash, 'app_id' : APP_ID, 'app_version' : APP_VERSION, } # # add some RFC266 fields that are generated internally, and not as # # user args image_dict = opt.to_dict( postprocessing=postprocessing ) # remove any image keys not mentioned in RFC #266 rfc266_img_fields = ['type','postprocessing','sampler','prompt','seed','variations','steps', 'cfg_scale','threshold','perlin','step_number','width','height','extra','strength','seamless' 'init_img','init_mask','facetool','facetool_strength','upscale'] rfc_dict ={} for item in image_dict.items(): key,value = item if key in rfc266_img_fields: rfc_dict[key] = value # semantic drift rfc_dict['sampler'] = image_dict.get('sampler_name',None) # display weighted subprompts (liable to change) if opt.prompt: subprompts = split_weighted_subprompts(opt.prompt) subprompts = [{'prompt':x[0],'weight':x[1]} for x in subprompts] rfc_dict['prompt'] = subprompts # 'variations' should always exist and be an array, empty or consisting of {'seed': seed, 'weight': weight} pairs rfc_dict['variations'] = [{'seed':x[0],'weight':x[1]} for x in opt.with_variations] if opt.with_variations else [] # if variations are present then we need to replace 'seed' with 'orig_seed' if hasattr(opt,'first_seed'): rfc_dict['seed'] = opt.first_seed if opt.init_img: rfc_dict['type'] = 'img2img' rfc_dict['strength_steps'] = rfc_dict.pop('strength') rfc_dict['orig_hash'] = calculate_init_img_hash(opt.init_img) rfc_dict['inpaint_replace'] = opt.inpaint_replace else: rfc_dict['type'] = 'txt2img' rfc_dict.pop('strength') if len(seeds)==0 and opt.seed: seeds=[seed] if opt.grid: images = [] for seed in seeds: rfc_dict['seed'] = seed images.append(copy.copy(rfc_dict)) metadata['images'] = images else: # there should only ever be a single seed if we did not generate a grid assert len(seeds) == 1, 'Expected a single seed' rfc_dict['seed'] = seeds[0] metadata['image'] = rfc_dict return metadata @functools.lru_cache(maxsize=50) def args_from_png(png_file_path) -> list[Args]: ''' Given the path to a PNG file created by invoke.py, retrieves a list of Args objects containing the image data. ''' try: meta = ldm.invoke.pngwriter.retrieve_metadata(png_file_path) except AttributeError: return [legacy_metadata_load({},png_file_path)] try: return metadata_loads(meta) except: return [legacy_metadata_load(meta,png_file_path)] @functools.lru_cache(maxsize=50) def metadata_from_png(png_file_path) -> Args: ''' Given the path to a PNG file created by dream.py, retrieves an Args object containing the image metadata. Note that this returns a single Args object, not multiple. ''' args_list = args_from_png(png_file_path) return args_list[0] def dream_cmd_from_png(png_file_path): opt = metadata_from_png(png_file_path) return opt.dream_prompt_str() def metadata_loads(metadata) -> list: ''' Takes the dictionary corresponding to RFC266 (https://github.com/lstein/stable-diffusion/issues/266) and returns a series of opt objects for each of the images described in the dictionary. Note that this returns a list, and not a single object. See metadata_from_png() for a more convenient function for files that contain a single image. ''' results = [] try: if 'images' in metadata['sd-metadata']: images = metadata['sd-metadata']['images'] else: images = [metadata['sd-metadata']['image']] for image in images: # repack the prompt and variations if 'prompt' in image: image['prompt'] = repack_prompt(image['prompt']) if 'variations' in image: image['variations'] = ','.join([':'.join([str(x['seed']),str(x['weight'])]) for x in image['variations']]) # fix a bit of semantic drift here image['sampler_name']=image.pop('sampler') opt = Args() opt._cmd_switches = Namespace(**image) results.append(opt) except Exception as e: import sys, traceback print('>> could not read metadata',file=sys.stderr) print(traceback.format_exc(), file=sys.stderr) return results def repack_prompt(prompt_list:list)->str: # in the common case of no weighting syntax, just return the prompt as is if len(prompt_list) > 1: return ','.join([':'.join([x['prompt'], str(x['weight'])]) for x in prompt_list]) else: return prompt_list[0]['prompt'] # image can either be a file path on disk or a base64-encoded # representation of the file's contents def calculate_init_img_hash(image_string): prefix = 'data:image/png;base64,' hash = None if image_string.startswith(prefix): imagebase64 = image_string[len(prefix):] imagedata = base64.b64decode(imagebase64) with open('outputs/test.png','wb') as file: file.write(imagedata) sha = hashlib.sha256() sha.update(imagedata) hash = sha.hexdigest() else: hash = sha256(image_string) return hash # Bah. This should be moved somewhere else... def sha256(path): sha = hashlib.sha256() with open(path,'rb') as f: while True: data = f.read(65536) if not data: break sha.update(data) return sha.hexdigest() def legacy_metadata_load(meta,pathname) -> Args: opt = Args() if 'Dream' in meta and len(meta['Dream']) > 0: dream_prompt = meta['Dream'] opt.parse_cmd(dream_prompt) else: # if nothing else, we can get the seed match = re.search('\d+\.(\d+)',pathname) if match: seed = match.groups()[0] opt.seed = seed else: opt.prompt = '' opt.seed = 0 return opt