#!/usr/bin/env python # Copyright (c) 2022 Lincoln D. Stein (https://github.com/lstein) # Before running stable-diffusion on an internet-isolated machine, # run this script from one with internet connectivity. The # two machines must share a common .cache directory. """ This is the npyscreen frontend to the model installation application. The work is actually done in backend code in model_install_backend.py. """ import argparse import curses import os import sys from argparse import Namespace from collections import deque from multiprocessing import Process from multiprocessing.connection import Connection, Pipe from pathlib import Path from shutil import get_terminal_size from typing import List import logging import npyscreen import torch from npyscreen import widget from omegaconf import OmegaConf import invokeai.backend.util.logging as logger from dataclasses import dataclass,field from ...backend.install.model_install_backend import ( Dataset_path, default_config_file, default_dataset, install_requested_models, recommended_datasets, ModelInstallList, ) from ...backend import ModelManager from ...backend.util import choose_precision, choose_torch_device from ...backend.util.logging import InvokeAILogger, InvokeAILogFormatter from .widgets import ( CenteredTitleText, MultiSelectColumns, SingleSelectColumns, OffsetButtonPress, TextBox, BufferBox, set_min_terminal_size, ) from invokeai.app.services.config import get_invokeai_config # minimum size for the UI MIN_COLS = 120 MIN_LINES = 50 config = get_invokeai_config() class addModelsForm(npyscreen.FormMultiPage): # for responsive resizing - disabled # FIX_MINIMUM_SIZE_WHEN_CREATED = False # for persistence current_tab = 0 def __init__(self, parentApp, name, multipage=False, *args, **keywords): self.multipage = multipage super().__init__(parentApp=parentApp, name=name, *args, **keywords) def create(self): self.keypress_timeout = 10 self.counter = 0 self.subprocess_connection = None model_manager = ModelManager(config.model_conf_path) self.initial_models = OmegaConf.load(Dataset_path)['diffusers'] self.installed_cn_models = model_manager.list_controlnet_models() self.installed_lora_models = model_manager.list_lora_models() self.installed_ti_models = model_manager.list_ti_models() try: self.existing_models = OmegaConf.load(default_config_file()) except: self.existing_models = dict() self.starter_model_list = list(self.initial_models.keys()) self.installed_models = dict() window_width, window_height = get_terminal_size() self.nextrely -= 1 self.add_widget_intelligent( npyscreen.FixedText, value="Use ctrl-N and ctrl-P to move to the ext and

revious fields,", editable=False, color="CAUTION", ) self.add_widget_intelligent( npyscreen.FixedText, value="Use cursor arrows to make a selection, and space to toggle checkboxes.", editable=False, color="CAUTION", ) self.nextrely += 1 self.tabs = self.add_widget_intelligent( SingleSelectColumns, values=[ 'DIFFUSERS MODELS', 'CONTROLNET MODELS', 'LORA/LYCORIS MODELS', 'TEXTUAL INVERSION MODELS' ], value=[self.current_tab], columns = 4, max_height = 2, relx=8, scroll_exit = True, ) self.tabs.on_changed = self._toggle_tables top_of_table = self.nextrely self.diffusers_models = self.add_diffusers() bottom_of_table = self.nextrely self.nextrely = top_of_table self.controlnet_models = self.add_controlnets() self.nextrely = top_of_table self.lora_models = self.add_loras() self.nextrely = top_of_table self.ti_models = self.add_tis() self.nextrely = bottom_of_table+1 self.monitor = self.add_widget_intelligent( BufferBox, name='Log Messages', editable=False, max_height = 20, ) # self.monitor = self.add_widget_intelligent( # npyscreen.BufferPager, # editable=False, # max_height = 20, # ) self.nextrely += 1 done_label = "INSTALL/REMOVE" back_label = "BACK" button_length = len(done_label) button_offset = 0 if self.multipage: button_length += len(back_label) + 1 button_offset += len(back_label) + 1 self.back_button = self.add_widget_intelligent( OffsetButtonPress, name=back_label, relx=(window_width - button_length) // 2, offset=-3, rely=-3, when_pressed_function=self.on_back, ) self.ok_button = self.add_widget_intelligent( OffsetButtonPress, name=done_label, offset=+3, relx=button_offset + 1 + (window_width - button_length) // 2, rely=-3, when_pressed_function=self.on_execute ) self.cancel = self.add_widget_intelligent( npyscreen.ButtonPress, name="QUIT", rely=-3, relx=window_width-20, when_pressed_function=self.on_cancel, ) # This restores the selected page on return from an installation for i in range(1,self.current_tab+1): self.tabs.h_cursor_line_down(1) self._toggle_tables([self.current_tab]) ############# diffusers tab ########## def add_diffusers(self)->dict[str, npyscreen.widget]: '''Add widgets responsible for selecting diffusers models''' widgets = dict() starter_model_labels = self._get_starter_model_labels() recommended_models = [ x for x in self.starter_model_list if self.initial_models[x].get("recommended", False) ] self.installed_models = sorted( [x for x in list(self.initial_models.keys()) if x in self.existing_models] ) widgets.update( label1 = self.add_widget_intelligent( CenteredTitleText, name="Select from a starter set of Stable Diffusion models from HuggingFace.", editable=False, labelColor="CAUTION", ) ) self.nextrely -= 1 # if user has already installed some initial models, then don't patronize them # by showing more recommendations show_recommended = not self.existing_models widgets.update( models_selected = self.add_widget_intelligent( npyscreen.MultiSelect, name="Install Starter Models", values=starter_model_labels, value=[ self.starter_model_list.index(x) for x in self.starter_model_list if (show_recommended and x in recommended_models)\ or (x in self.existing_models) ], max_height=len(starter_model_labels) + 1, relx=4, scroll_exit=True, ) ) widgets.update( purge_deleted = self.add_widget_intelligent( npyscreen.Checkbox, name="Purge unchecked diffusers models from disk", value=False, scroll_exit=True, relx=4, ) ) self.nextrely += 1 widgets.update( label3 = self.add_widget_intelligent( CenteredTitleText, name="== IMPORT MORE DIFFUSERS MODELS FROM YOUR LOCAL DISK OR THE INTERNET ==", editable=False, color="CONTROL", ) ) self.nextrely -= 1 widgets.update( label4 = self.add_widget_intelligent( CenteredTitleText, name="Enter URLs, file paths, or HuggingFace repository IDs, separated by spaces. Use shift-control-V to paste:", editable=False, labelColor="CONTROL", relx=4, ) ) self.nextrely -= 1 widgets.update( download_ids = self.add_widget_intelligent( TextBox, max_height=4, scroll_exit=True, editable=True, relx=4 ) ) self.nextrely += 1 widgets.update( autoload_directory = self.add_widget_intelligent( npyscreen.TitleFilename, name="Directory to scan for models to import ( autocompletes):", select_dir=True, must_exist=True, use_two_lines=False, labelColor="DANGER", begin_entry_at=65, scroll_exit=True, ) ) widgets.update( autoscan_on_startup = self.add_widget_intelligent( npyscreen.Checkbox, name="Scan and import from this directory each time InvokeAI starts", value=False, relx=4, scroll_exit=True, ) ) return widgets ############# controlnet tab ########## def add_controlnets(self)->dict[str, npyscreen.widget]: widgets = dict() cn_model_list = sorted(self.installed_cn_models.keys()) widgets.update( label1 = self.add_widget_intelligent( CenteredTitleText, name="Select the desired ControlNet models to install. Unchecked models will be purged from disk.", editable=False, labelColor="CAUTION", ) ) columns=6 widgets.update( models_selected = self.add_widget_intelligent( MultiSelectColumns, columns=columns, name="Install ControlNet Models", values=cn_model_list, value=[ cn_model_list.index(x) for x in cn_model_list if self.installed_cn_models[x] ], max_height=len(cn_model_list)//columns + 1, relx=4, scroll_exit=True, ) ) self.nextrely += 1 widgets.update( label2 = self.add_widget_intelligent( npyscreen.TitleFixedText, name='Additional ControlNet HuggingFace repo_ids to install (Space separated. Use shift-control-V to paste):', relx=4, color='CONTROL', editable=False, scroll_exit=True ) ) self.nextrely -= 1 widgets.update( download_ids = self.add_widget_intelligent( TextBox, max_height=4, scroll_exit=True, editable=True, relx=4 ) ) return widgets ############# LoRA tab ############ # TO DO - create generic function for loras and textual inversions def add_loras(self)->dict[str,npyscreen.widget]: widgets = dict() model_list = sorted(self.installed_lora_models.keys()) widgets.update( label1 = self.add_widget_intelligent( CenteredTitleText, name="Select the desired LoRA/LyCORIS models to install. Unchecked models will be purged from disk.", editable=False, labelColor="CAUTION", ) ) columns=min(len(model_list),3) or 1 widgets.update( models_selected = self.add_widget_intelligent( MultiSelectColumns, columns=columns, name="Install ControlNet Models", values=model_list, value=[ model_list.index(x) for x in model_list if self.installed_lora_models[x] ], max_height=len(model_list)//columns + 1, relx=4, scroll_exit=True, ) ) self.nextrely += 1 widgets.update( label2 = self.add_widget_intelligent( npyscreen.TitleFixedText, name='URLs for new LoRA/LYCORIS models to download and install (Space separated. Use shift-control-V to paste):', relx=4, color='CONTROL', editable=False, hidden=True, scroll_exit=True ) ) self.nextrely -= 1 widgets.update( download_ids = self.add_widget_intelligent( TextBox, max_height=4, scroll_exit=True, editable=True, relx=4, hidden=True, ) ) return widgets ############# Textual Inversion tab ############ def add_tis(self)->dict[str, npyscreen.widget]: widgets = dict() model_list = sorted(self.installed_ti_models.keys()) widgets.update( label1 = self.add_widget_intelligent( CenteredTitleText, name="Select the desired models to install. Unchecked models will be purged from disk.", editable=False, labelColor="CAUTION", ) ) columns=min(len(model_list),6) or 1 widgets.update( models_selected = self.add_widget_intelligent( MultiSelectColumns, columns=columns, name="Install Textual Inversion Embeddings", values=model_list, value=[ model_list.index(x) for x in model_list if self.installed_ti_models[x] ], max_height=len(model_list)//columns + 1, relx=4, scroll_exit=True, ) ) widgets.update( label2 = self.add_widget_intelligent( npyscreen.TitleFixedText, name='Textual Inversion models to download, use URLs or HugggingFace repo_ids (Space separated. Use shift-control-V to paste):', relx=4, color='CONTROL', editable=False, hidden=True, scroll_exit=True ) ) self.nextrely -= 1 widgets.update( download_ids = self.add_widget_intelligent( TextBox, max_height=4, scroll_exit=True, editable=True, relx=4, hidden=True, ) ) return widgets def resize(self): super().resize() if (s := self.diffusers_models.get("models_selected")): s.values = self._get_starter_model_labels() def _toggle_tables(self, value=None): selected_tab = value[0] widgets = [ self.diffusers_models, self.controlnet_models, self.lora_models, self.ti_models, ] for group in widgets: for k,v in group.items(): v.hidden = True for k,v in widgets[selected_tab].items(): v.hidden = False self.__class__.current_tab = selected_tab # for persistence self.display() def _get_starter_model_labels(self) -> List[str]: window_width, window_height = get_terminal_size() label_width = 25 checkbox_width = 4 spacing_width = 2 description_width = window_width - label_width - checkbox_width - spacing_width im = self.initial_models names = self.starter_model_list descriptions = [ im[x].description[0 : description_width - 3] + "..." if len(im[x].description) > description_width else im[x].description for x in names ] return [ f"%-{label_width}s %s" % (names[x], descriptions[x]) for x in range(0, len(names)) ] def _get_columns(self) -> int: window_width, window_height = get_terminal_size() cols = ( 4 if window_width > 240 else 3 if window_width > 160 else 2 if window_width > 80 else 1 ) return min(cols, len(self.installed_models)) def on_execute(self): self.monitor.entry_widget.buffer(['Installing...'],scroll_end=True) self.marshall_arguments() app = self.parentApp self.display() # for communication with the subprocess parent_conn, child_conn = Pipe() p = Process( target = process_and_execute, kwargs=dict( opt = app.opt, selections = app.user_selections, conn_out = child_conn, ) ) p.start() child_conn.close() self.subprocess_connection = parent_conn # process_and_execute(app.opt, app.user_selections) def on_ok(self): self.parentApp.setNextForm(None) self.editing = False self.parentApp.user_cancelled = False self.marshall_arguments() def on_back(self): self.parentApp.switchFormPrevious() self.editing = False def on_cancel(self): self.parentApp.setNextForm(None) self.parentApp.user_cancelled = True self.editing = False def while_waiting(self): if c := self.subprocess_connection: while c.poll(): try: data = c.recv_bytes().decode('utf-8') data.strip('\n') if data=='*done*': self.subprocess_connection = None self.monitor.entry_widget.buffer(['** Action Complete **']) self.display() # this is crazy self.parentApp.main_form = self.parentApp.addForm( "MAIN", addModelsForm, name="Install Stable Diffusion Models" ) self.parentApp.switchForm('NEW') return self.monitor.entry_widget.buffer([data]) self.display() except (EOFError,OSError): self.subprocess_connection = None def marshall_arguments(self): """ Assemble arguments and store as attributes of the application: .starter_models: dict of model names to install from INITIAL_CONFIGURE.yaml True => Install False => Remove .scan_directory: Path to a directory of models to scan and import .autoscan_on_startup: True if invokeai should scan and import at startup time .import_model_paths: list of URLs, repo_ids and file paths to import """ # we're using a global here rather than storing the result in the parentapp # due to some bug in npyscreen that is causing attributes to be lost selections = self.parentApp.user_selections # starter models to install/remove starter_models = dict( map( lambda x: (self.starter_model_list[x], True), self.diffusers_models['models_selected'].value, ) ) selections.purge_deleted_models = self.diffusers_models['purge_deleted'].value selections.install_models = [x for x in starter_models if x not in self.existing_models] selections.remove_models = [x for x in self.starter_model_list if x in self.existing_models and x not in starter_models] # TODO: REFACTOR THIS REPETITIVE CODE cn_models_selected = self.controlnet_models['models_selected'] selections.install_cn_models = [cn_models_selected.values[x] for x in cn_models_selected.value if not self.installed_cn_models[cn_models_selected.values[x]] ] selections.remove_cn_models = [x for x in cn_models_selected.values if self.installed_cn_models[x] and cn_models_selected.values.index(x) not in cn_models_selected.value ] if (additional_cns := self.controlnet_models['download_ids'].value.split()): valid_cns = [x for x in additional_cns if '/' in x] selections.install_cn_models.extend(valid_cns) # same thing, for LoRAs loras_selected = self.lora_models['models_selected'] selections.install_lora_models = [loras_selected.values[x] for x in loras_selected.value if not self.installed_lora_models[loras_selected.values[x]] ] selections.remove_lora_models = [x for x in loras_selected.values if self.installed_lora_models[x] and loras_selected.values.index(x) not in loras_selected.value ] if (additional_loras := self.lora_models['download_ids'].value.split()): selections.install_lora_models.extend(additional_loras) # same thing, for TIs # TODO: refactor tis_selected = self.ti_models['models_selected'] selections.install_ti_models = [tis_selected.values[x] for x in tis_selected.value if not self.installed_ti_models[tis_selected.values[x]] ] selections.remove_ti_models = [x for x in tis_selected.values if self.installed_ti_models[x] and tis_selected.values.index(x) not in tis_selected.value ] if (additional_tis := self.ti_models['download_ids'].value.split()): selections.install_ti_models.extend(additional_tis) # load directory and whether to scan on startup selections.scan_directory = self.diffusers_models['autoload_directory'].value selections.autoscan_on_startup = self.diffusers_models['autoscan_on_startup'].value # URLs and the like selections.import_model_paths = self.diffusers_models['download_ids'].value.split() @dataclass class UserSelections(): install_models: List[str]= field(default_factory=list) remove_models: List[str]=field(default_factory=list) purge_deleted_models: bool=field(default_factory=list) install_cn_models: List[str] = field(default_factory=list) remove_cn_models: List[str] = field(default_factory=list) install_lora_models: List[str] = field(default_factory=list) remove_lora_models: List[str] = field(default_factory=list) install_ti_models: List[str] = field(default_factory=list) remove_ti_models: List[str] = field(default_factory=list) scan_directory: Path = None autoscan_on_startup: bool=False import_model_paths: str=None class AddModelApplication(npyscreen.NPSAppManaged): def __init__(self,opt): super().__init__() self.opt = opt self.user_cancelled = False self.user_selections = UserSelections() def onStart(self): npyscreen.setTheme(npyscreen.Themes.DefaultTheme) self.main_form = self.addForm( "MAIN", addModelsForm, name="Install Stable Diffusion Models" ) class StderrToMessage(): def __init__(self, connection: Connection): self.connection = connection def write(self, data:str): self.connection.send_bytes(data.encode('utf-8')) def flush(self): pass # -------------------------------------------------------- def process_and_execute(opt: Namespace, selections: Namespace, conn_out: Connection=None, ): # set up so that stderr is sent to conn_out if conn_out: translator = StderrToMessage(conn_out) sys.stderr = translator sys.stdout = translator InvokeAILogger.getLogger().handlers[0]=logging.StreamHandler(translator) models_to_install = selections.install_models models_to_remove = selections.remove_models directory_to_scan = selections.scan_directory scan_at_startup = selections.autoscan_on_startup potential_models_to_install = selections.import_model_paths install_requested_models( diffusers = ModelInstallList(models_to_install, models_to_remove), controlnet = ModelInstallList(selections.install_cn_models, selections.remove_cn_models), lora = ModelInstallList(selections.install_lora_models, selections.remove_lora_models), ti = ModelInstallList(selections.install_ti_models, selections.remove_ti_models), scan_directory=Path(directory_to_scan) if directory_to_scan else None, external_models=potential_models_to_install, scan_at_startup=scan_at_startup, precision="float32" if opt.full_precision else choose_precision(torch.device(choose_torch_device())), purge_deleted=selections.purge_deleted_models, config_file_path=Path(opt.config_file) if opt.config_file else None, ) if conn_out: conn_out.send_bytes('*done*'.encode('utf-8')) conn_out.close() # -------------------------------------------------------- def select_and_download_models(opt: Namespace): precision = ( "float32" if opt.full_precision else choose_precision(torch.device(choose_torch_device())) ) if opt.default_only: install_requested_models( install_initial_models=default_dataset(), precision=precision, ) elif opt.yes_to_all: install_requested_models( install_initial_models=recommended_datasets(), precision=precision, ) else: # needed because the torch library is loaded, even though we don't use it torch.multiprocessing.set_start_method("spawn") set_min_terminal_size(MIN_COLS, MIN_LINES) installApp = AddModelApplication(opt) installApp.run() process_and_execute(opt, installApp.user_selections) # ------------------------------------- def main(): parser = argparse.ArgumentParser(description="InvokeAI model downloader") parser.add_argument( "--full-precision", dest="full_precision", action=argparse.BooleanOptionalAction, type=bool, default=False, help="use 32-bit weights instead of faster 16-bit weights", ) parser.add_argument( "--yes", "-y", dest="yes_to_all", action="store_true", help='answer "yes" to all prompts', ) parser.add_argument( "--default_only", action="store_true", help="only install the default model", ) parser.add_argument( "--config_file", "-c", dest="config_file", type=str, default=None, help="path to configuration file to create", ) parser.add_argument( "--root_dir", dest="root", type=str, default=None, help="path to root of install directory", ) opt = parser.parse_args() # setting a global here if opt.root and Path(opt.root).exists(): config.root = Path(opt.root) if not (config.root_dir / config.conf_path.parent).exists(): logger.info( "Your InvokeAI root directory is not set up. Calling invokeai-configure." ) from invokeai.frontend.install import invokeai_configure invokeai_configure() sys.exit(0) try: select_and_download_models(opt) except AssertionError as e: logger.error(e) sys.exit(-1) except KeyboardInterrupt: curses.nocbreak() curses.echo() curses.endwin() logger.info("Goodbye! Come back soon.") except widget.NotEnoughSpaceForWidget as e: if str(e).startswith("Height of 1 allocated"): logger.error( "Insufficient vertical space for the interface. Please make your window taller and try again" ) elif str(e).startswith("addwstr"): logger.error( "Insufficient horizontal space for the interface. Please make your window wider and try again." ) # ------------------------------------- if __name__ == "__main__": main()