""" Manage a RAM cache of diffusion/transformer models for fast switching. They are moved between GPU VRAM and CPU RAM as necessary. If the cache grows larger than a preset maximum, then the least recently used model will be cleared and (re)loaded from disk when next needed. The cache returns context manager generators designed to load the model into the GPU within the context, and unload outside the context. Use like this: cache = ModelCache(max_cache_size=7.5) with cache.get_model('runwayml/stable-diffusion-1-5') as SD1, cache.get_model('stabilityai/stable-diffusion-2') as SD2: do_something_in_GPU(SD1,SD2) """ import gc import hashlib import math import os import sys import time from contextlib import suppress from dataclasses import dataclass, field from pathlib import Path from typing import Any, Dict, Optional, Type, Union, types import torch import invokeai.backend.util.logging as logger from invokeai.backend.model_management.memory_snapshot import MemorySnapshot, get_pretty_snapshot_diff from invokeai.backend.model_management.model_load_optimizations import skip_torch_weight_init from ..util.devices import choose_torch_device from .models import BaseModelType, ModelBase, ModelType, SubModelType if choose_torch_device() == torch.device("mps"): from torch import mps # Maximum size of the cache, in gigs # Default is roughly enough to hold three fp16 diffusers models in RAM simultaneously DEFAULT_MAX_CACHE_SIZE = 6.0 # amount of GPU memory to hold in reserve for use by generations (GB) DEFAULT_MAX_VRAM_CACHE_SIZE = 2.75 # actual size of a gig GIG = 1073741824 # Size of a MB in bytes. MB = 2**20 @dataclass class CacheStats(object): hits: int = 0 # cache hits misses: int = 0 # cache misses high_watermark: int = 0 # amount of cache used in_cache: int = 0 # number of models in cache cleared: int = 0 # number of models cleared to make space cache_size: int = 0 # total size of cache # {submodel_key => size} loaded_model_sizes: Dict[str, int] = field(default_factory=dict) class ModelLocker(object): "Forward declaration" pass class ModelCache(object): "Forward declaration" pass class _CacheRecord: size: int model: Any cache: ModelCache _locks: int def __init__(self, cache, model: Any, size: int): self.size = size self.model = model self.cache = cache self._locks = 0 def lock(self): self._locks += 1 def unlock(self): self._locks -= 1 assert self._locks >= 0 @property def locked(self): return self._locks > 0 @property def loaded(self): if self.model is not None and hasattr(self.model, "device"): return self.model.device != self.cache.storage_device else: return False class ModelCache(object): def __init__( self, max_cache_size: float = DEFAULT_MAX_CACHE_SIZE, max_vram_cache_size: float = DEFAULT_MAX_VRAM_CACHE_SIZE, execution_device: torch.device = torch.device("cuda"), storage_device: torch.device = torch.device("cpu"), precision: torch.dtype = torch.float16, sequential_offload: bool = False, lazy_offloading: bool = True, sha_chunksize: int = 16777216, logger: types.ModuleType = logger, log_memory_usage: bool = False, ): """ :param max_cache_size: Maximum size of the RAM cache [6.0 GB] :param execution_device: Torch device to load active model into [torch.device('cuda')] :param storage_device: Torch device to save inactive model in [torch.device('cpu')] :param precision: Precision for loaded models [torch.float16] :param lazy_offloading: Keep model in VRAM until another model needs to be loaded :param sequential_offload: Conserve VRAM by loading and unloading each stage of the pipeline sequentially :param sha_chunksize: Chunksize to use when calculating sha256 model hash :param log_memory_usage: If True, a memory snapshot will be captured before and after every model cache operation, and the result will be logged (at debug level). There is a time cost to capturing the memory snapshots, so it is recommended to disable this feature unless you are actively inspecting the model cache's behaviour. """ self.model_infos: Dict[str, ModelBase] = dict() # allow lazy offloading only when vram cache enabled self.lazy_offloading = lazy_offloading and max_vram_cache_size > 0 self.precision: torch.dtype = precision self.max_cache_size: float = max_cache_size self.max_vram_cache_size: float = max_vram_cache_size self.execution_device: torch.device = execution_device self.storage_device: torch.device = storage_device self.sha_chunksize = sha_chunksize self.logger = logger self._log_memory_usage = log_memory_usage # used for stats collection self.stats = None self._cached_models = dict() self._cache_stack = list() def _capture_memory_snapshot(self) -> Optional[MemorySnapshot]: if self._log_memory_usage: return MemorySnapshot.capture() return None def get_key( self, model_path: str, base_model: BaseModelType, model_type: ModelType, submodel_type: Optional[SubModelType] = None, ): key = f"{model_path}:{base_model}:{model_type}" if submodel_type: key += f":{submodel_type}" return key def _get_model_info( self, model_path: str, model_class: Type[ModelBase], base_model: BaseModelType, model_type: ModelType, ): model_info_key = self.get_key( model_path=model_path, base_model=base_model, model_type=model_type, submodel_type=None, ) if model_info_key not in self.model_infos: self.model_infos[model_info_key] = model_class( model_path, base_model, model_type, ) return self.model_infos[model_info_key] # TODO: args def get_model( self, model_path: Union[str, Path], model_class: Type[ModelBase], base_model: BaseModelType, model_type: ModelType, submodel: Optional[SubModelType] = None, gpu_load: bool = True, ) -> Any: if not isinstance(model_path, Path): model_path = Path(model_path) if not os.path.exists(model_path): raise Exception(f"Model not found: {model_path}") model_info = self._get_model_info( model_path=model_path, model_class=model_class, base_model=base_model, model_type=model_type, ) key = self.get_key( model_path=model_path, base_model=base_model, model_type=model_type, submodel_type=submodel, ) # TODO: lock for no copies on simultaneous calls? cache_entry = self._cached_models.get(key, None) if cache_entry is None: self.logger.info( f"Loading model {model_path}, type" f" {base_model.value}:{model_type.value}{':'+submodel.value if submodel else ''}" ) if self.stats: self.stats.misses += 1 self_reported_model_size_before_load = model_info.get_size(submodel) # Remove old models from the cache to make room for the new model. self._make_cache_room(self_reported_model_size_before_load) # Load the model from disk and capture a memory snapshot before/after. start_load_time = time.time() snapshot_before = self._capture_memory_snapshot() with skip_torch_weight_init(): model = model_info.get_model(child_type=submodel, torch_dtype=self.precision) snapshot_after = self._capture_memory_snapshot() end_load_time = time.time() self_reported_model_size_after_load = model_info.get_size(submodel) self.logger.debug( f"Moved model '{key}' from disk to cpu in {(end_load_time-start_load_time):.2f}s.\n" f"Self-reported size before/after load: {(self_reported_model_size_before_load/GIG):.3f}GB /" f" {(self_reported_model_size_after_load/GIG):.3f}GB.\n" f"{get_pretty_snapshot_diff(snapshot_before, snapshot_after)}" ) if abs(self_reported_model_size_after_load - self_reported_model_size_before_load) > 10 * MB: self.logger.debug( f"Model '{key}' mis-reported its size before load. Self-reported size before/after load:" f" {(self_reported_model_size_before_load/GIG):.2f}GB /" f" {(self_reported_model_size_after_load/GIG):.2f}GB." ) cache_entry = _CacheRecord(self, model, self_reported_model_size_after_load) self._cached_models[key] = cache_entry else: if self.stats: self.stats.hits += 1 if self.stats: self.stats.cache_size = self.max_cache_size * GIG self.stats.high_watermark = max(self.stats.high_watermark, self._cache_size()) self.stats.in_cache = len(self._cached_models) self.stats.loaded_model_sizes[key] = max( self.stats.loaded_model_sizes.get(key, 0), model_info.get_size(submodel) ) with suppress(Exception): self._cache_stack.remove(key) self._cache_stack.append(key) return self.ModelLocker(self, key, cache_entry.model, gpu_load, cache_entry.size) def _move_model_to_device(self, key: str, target_device: torch.device): cache_entry = self._cached_models[key] source_device = cache_entry.model.device # Note: We compare device types only so that 'cuda' == 'cuda:0'. This would need to be revised to support # multi-GPU. if torch.device(source_device).type == torch.device(target_device).type: return start_model_to_time = time.time() snapshot_before = self._capture_memory_snapshot() cache_entry.model.to(target_device) snapshot_after = self._capture_memory_snapshot() end_model_to_time = time.time() self.logger.debug( f"Moved model '{key}' from {source_device} to" f" {target_device} in {(end_model_to_time-start_model_to_time):.2f}s.\n" f"Estimated model size: {(cache_entry.size/GIG):.3f} GB.\n" f"{get_pretty_snapshot_diff(snapshot_before, snapshot_after)}" ) if ( snapshot_before is not None and snapshot_after is not None and snapshot_before.vram is not None and snapshot_after.vram is not None ): vram_change = abs(snapshot_before.vram - snapshot_after.vram) # If the estimated model size does not match the change in VRAM, log a warning. if not math.isclose( vram_change, cache_entry.size, rel_tol=0.1, abs_tol=10 * MB, ): self.logger.debug( f"Moving model '{key}' from {source_device} to" f" {target_device} caused an unexpected change in VRAM usage. The model's" " estimated size may be incorrect. Estimated model size:" f" {(cache_entry.size/GIG):.3f} GB.\n" f"{get_pretty_snapshot_diff(snapshot_before, snapshot_after)}" ) class ModelLocker(object): def __init__(self, cache, key, model, gpu_load, size_needed): """ :param cache: The model_cache object :param key: The key of the model to lock in GPU :param model: The model to lock :param gpu_load: True if load into gpu :param size_needed: Size of the model to load """ self.gpu_load = gpu_load self.cache = cache self.key = key self.model = model self.size_needed = size_needed self.cache_entry = self.cache._cached_models[self.key] def __enter__(self) -> Any: if not hasattr(self.model, "to"): return self.model # NOTE that the model has to have the to() method in order for this # code to move it into GPU! if self.gpu_load: self.cache_entry.lock() try: if self.cache.lazy_offloading: self.cache._offload_unlocked_models(self.size_needed) self.cache._move_model_to_device(self.key, self.cache.execution_device) self.cache.logger.debug(f"Locking {self.key} in {self.cache.execution_device}") self.cache._print_cuda_stats() except Exception: self.cache_entry.unlock() raise # TODO: not fully understand # in the event that the caller wants the model in RAM, we # move it into CPU if it is in GPU and not locked elif self.cache_entry.loaded and not self.cache_entry.locked: self.cache._move_model_to_device(self.key, self.cache.storage_device) return self.model def __exit__(self, type, value, traceback): if not hasattr(self.model, "to"): return self.cache_entry.unlock() if not self.cache.lazy_offloading: self.cache._offload_unlocked_models() self.cache._print_cuda_stats() # TODO: should it be called untrack_model? def uncache_model(self, cache_id: str): with suppress(ValueError): self._cache_stack.remove(cache_id) self._cached_models.pop(cache_id, None) def model_hash( self, model_path: Union[str, Path], ) -> str: """ Given the HF repo id or path to a model on disk, returns a unique hash. Works for legacy checkpoint files, HF models on disk, and HF repo IDs :param model_path: Path to model file/directory on disk. """ return self._local_model_hash(model_path) def cache_size(self) -> float: """Return the current size of the cache, in GB.""" return self._cache_size() / GIG def _has_cuda(self) -> bool: return self.execution_device.type == "cuda" def _print_cuda_stats(self): vram = "%4.2fG" % (torch.cuda.memory_allocated() / GIG) ram = "%4.2fG" % self.cache_size() cached_models = 0 loaded_models = 0 locked_models = 0 for model_info in self._cached_models.values(): cached_models += 1 if model_info.loaded: loaded_models += 1 if model_info.locked: locked_models += 1 self.logger.debug( f"Current VRAM/RAM usage: {vram}/{ram}; cached_models/loaded_models/locked_models/ =" f" {cached_models}/{loaded_models}/{locked_models}" ) def _cache_size(self) -> int: return sum([m.size for m in self._cached_models.values()]) def _make_cache_room(self, model_size): # calculate how much memory this model will require # multiplier = 2 if self.precision==torch.float32 else 1 bytes_needed = model_size maximum_size = self.max_cache_size * GIG # stored in GB, convert to bytes current_size = self._cache_size() if current_size + bytes_needed > maximum_size: self.logger.debug( f"Max cache size exceeded: {(current_size/GIG):.2f}/{self.max_cache_size:.2f} GB, need an additional" f" {(bytes_needed/GIG):.2f} GB" ) self.logger.debug(f"Before unloading: cached_models={len(self._cached_models)}") pos = 0 models_cleared = 0 while current_size + bytes_needed > maximum_size and pos < len(self._cache_stack): model_key = self._cache_stack[pos] cache_entry = self._cached_models[model_key] refs = sys.getrefcount(cache_entry.model) # HACK: This is a workaround for a memory-management issue that we haven't tracked down yet. We are directly # going against the advice in the Python docs by using `gc.get_referrers(...)` in this way: # https://docs.python.org/3/library/gc.html#gc.get_referrers # manualy clear local variable references of just finished function calls # for some reason python don't want to collect it even by gc.collect() immidiately if refs > 2: while True: cleared = False for referrer in gc.get_referrers(cache_entry.model): if type(referrer).__name__ == "frame": # RuntimeError: cannot clear an executing frame with suppress(RuntimeError): referrer.clear() cleared = True # break # repeat if referrers changes(due to frame clear), else exit loop if cleared: gc.collect() else: break device = cache_entry.model.device if hasattr(cache_entry.model, "device") else None self.logger.debug( f"Model: {model_key}, locks: {cache_entry._locks}, device: {device}, loaded: {cache_entry.loaded}," f" refs: {refs}" ) # Expected refs: # 1 from cache_entry # 1 from getrefcount function # 1 from onnx runtime object if not cache_entry.locked and refs <= (3 if "onnx" in model_key else 2): self.logger.debug( f"Unloading model {model_key} to free {(model_size/GIG):.2f} GB (-{(cache_entry.size/GIG):.2f} GB)" ) current_size -= cache_entry.size models_cleared += 1 if self.stats: self.stats.cleared += 1 del self._cache_stack[pos] del self._cached_models[model_key] del cache_entry else: pos += 1 if models_cleared > 0: # There would likely be some 'garbage' to be collected regardless of whether a model was cleared or not, but # there is a significant time cost to calling `gc.collect()`, so we want to use it sparingly. (The time cost # is high even if no garbage gets collected.) # # Calling gc.collect(...) when a model is cleared seems like a good middle-ground: # - If models had to be cleared, it's a signal that we are close to our memory limit. # - If models were cleared, there's a good chance that there's a significant amount of garbage to be # collected. # # Keep in mind that gc is only responsible for handling reference cycles. Most objects should be cleaned up # immediately when their reference count hits 0. gc.collect() torch.cuda.empty_cache() if choose_torch_device() == torch.device("mps"): mps.empty_cache() self.logger.debug(f"After unloading: cached_models={len(self._cached_models)}") def _offload_unlocked_models(self, size_needed: int = 0): reserved = self.max_vram_cache_size * GIG vram_in_use = torch.cuda.memory_allocated() self.logger.debug(f"{(vram_in_use/GIG):.2f}GB VRAM used for models; max allowed={(reserved/GIG):.2f}GB") for model_key, cache_entry in sorted(self._cached_models.items(), key=lambda x: x[1].size): if vram_in_use <= reserved: break if not cache_entry.locked and cache_entry.loaded: self._move_model_to_device(model_key, self.storage_device) vram_in_use = torch.cuda.memory_allocated() self.logger.debug(f"{(vram_in_use/GIG):.2f}GB VRAM used for models; max allowed={(reserved/GIG):.2f}GB") torch.cuda.empty_cache() if choose_torch_device() == torch.device("mps"): mps.empty_cache() def _local_model_hash(self, model_path: Union[str, Path]) -> str: sha = hashlib.sha256() path = Path(model_path) hashpath = path / "checksum.sha256" if hashpath.exists() and path.stat().st_mtime <= hashpath.stat().st_mtime: with open(hashpath) as f: hash = f.read() return hash self.logger.debug(f"computing hash of model {path.name}") for file in list(path.rglob("*.ckpt")) + list(path.rglob("*.safetensors")) + list(path.rglob("*.pth")): with open(file, "rb") as f: while chunk := f.read(self.sha_chunksize): sha.update(chunk) hash = sha.hexdigest() with open(hashpath, "w") as f: f.write(hash) return hash