import os import torch from enum import Enum from typing import Optional, Union, Literal from .base import ( ModelBase, ModelConfigBase, BaseModelType, ModelType, SubModelType, classproperty, InvalidModelException, ) # TODO: naming from ..lora import LoRAModel as LoRAModelRaw class LoRAModelFormat(str, Enum): LyCORIS = "lycoris" Diffusers = "diffusers" class LoRAModel(ModelBase): #model_size: int class Config(ModelConfigBase): model_format: LoRAModelFormat # TODO: def __init__(self, model_path: str, base_model: BaseModelType, model_type: ModelType): assert model_type == ModelType.Lora super().__init__(model_path, base_model, model_type) self.model_size = os.path.getsize(self.model_path) def get_size(self, child_type: Optional[SubModelType] = None): if child_type is not None: raise Exception("There is no child models in lora") return self.model_size def get_model( self, torch_dtype: Optional[torch.dtype], child_type: Optional[SubModelType] = None, ): if child_type is not None: raise Exception("There is no child models in lora") model = LoRAModelRaw.from_checkpoint( file_path=self.model_path, dtype=torch_dtype, ) self.model_size = model.calc_size() return model @classproperty def save_to_config(cls) -> bool: return False @classmethod def detect_format(cls, path: str): if not os.path.exists(path): raise ModelNotFoundException() if os.path.isdir(path): if os.path.exists(os.path.join(path, "pytorch_lora_weights.bin")): return LoRAModelFormat.Diffusers if os.path.isfile(path): if any([path.endswith(f".{ext}") for ext in ["safetensors", "ckpt", "pt"]]): return LoRAModelFormat.LyCORIS raise InvalidModelException(f"Not a valid model: {path}") @classmethod def convert_if_required( cls, model_path: str, output_path: str, config: ModelConfigBase, base_model: BaseModelType, ) -> str: if cls.detect_format(model_path) == LoRAModelFormat.Diffusers: # TODO: add diffusers lora when it stabilizes a bit raise NotImplementedError("Diffusers lora not supported") else: return model_path