# Copyright (c) 2023 Lincoln Stein (https://github.com/lstein) and the InvokeAI Development Team """Invokeai configuration system. Arguments and fields are taken from the pydantic definition of the model. Defaults can be set by creating a yaml configuration file that has a top-level key of "InvokeAI" and subheadings for each of the categories returned by `invokeai --help`. The file looks like this: [file: invokeai.yaml] InvokeAI: Web Server: host: 127.0.0.1 port: 9090 allow_origins: [] allow_credentials: true allow_methods: - '*' allow_headers: - '*' Features: esrgan: true internet_available: true log_tokenization: false patchmatch: true ignore_missing_core_models: false Paths: autoimport_dir: autoimport lora_dir: null embedding_dir: null controlnet_dir: null conf_path: configs/models.yaml models_dir: models legacy_conf_dir: configs/stable-diffusion db_dir: databases outdir: /home/lstein/invokeai-main/outputs use_memory_db: false Logging: log_handlers: - console log_format: plain log_level: info Model Cache: ram: 13.5 vram: 0.25 lazy_offload: true log_memory_usage: false Device: device: auto precision: auto Generation: sequential_guidance: false attention_type: xformers attention_slice_size: auto force_tiled_decode: false The default name of the configuration file is `invokeai.yaml`, located in INVOKEAI_ROOT. You can replace supersede this by providing any OmegaConf dictionary object initialization time: omegaconf = OmegaConf.load('/tmp/init.yaml') conf = InvokeAIAppConfig() conf.parse_args(conf=omegaconf) InvokeAIAppConfig.parse_args() will parse the contents of `sys.argv` at initialization time. You may pass a list of strings in the optional `argv` argument to use instead of the system argv: conf.parse_args(argv=['--log_tokenization']) It is also possible to set a value at initialization time. However, if you call parse_args() it may be overwritten. conf = InvokeAIAppConfig(log_tokenization=True) conf.parse_args(argv=['--no-log_tokenization']) conf.log_tokenization # False To avoid this, use `get_config()` to retrieve the application-wide configuration object. This will retain any properties set at object creation time: conf = InvokeAIAppConfig.get_config(log_tokenization=True) conf.parse_args(argv=['--no-log_tokenization']) conf.log_tokenization # True Any setting can be overwritten by setting an environment variable of form: "INVOKEAI_", as in: export INVOKEAI_port=8080 Order of precedence (from highest): 1) initialization options 2) command line options 3) environment variable options 4) config file options 5) pydantic defaults Typical usage at the top level file: from invokeai.app.services.config import InvokeAIAppConfig # get global configuration and print its cache size conf = InvokeAIAppConfig.get_config() conf.parse_args() print(conf.ram_cache_size) Typical usage in a backend module: from invokeai.app.services.config import InvokeAIAppConfig # get global configuration and print its cache size value conf = InvokeAIAppConfig.get_config() print(conf.ram_cache_size) Computed properties: The InvokeAIAppConfig object has a series of properties that resolve paths relative to the runtime root directory. They each return a Path object: root_path - path to InvokeAI root output_path - path to default outputs directory model_conf_path - path to models.yaml conf - alias for the above embedding_path - path to the embeddings directory lora_path - path to the LoRA directory In most cases, you will want to create a single InvokeAIAppConfig object for the entire application. The InvokeAIAppConfig.get_config() function does this: config = InvokeAIAppConfig.get_config() config.parse_args() # read values from the command line/config file print(config.root) # Subclassing If you wish to create a similar class, please subclass the `InvokeAISettings` class and define a Literal field named "type", which is set to the desired top-level name. For example, to create a "InvokeBatch" configuration, define like this: class InvokeBatch(InvokeAISettings): type: Literal["InvokeBatch"] = "InvokeBatch" node_count : int = Field(default=1, description="Number of nodes to run on", json_schema_extra=dict(category='Resources')) cpu_count : int = Field(default=8, description="Number of GPUs to run on per node", json_schema_extra=dict(category='Resources')) This will now read and write from the "InvokeBatch" section of the config file, look for environment variables named INVOKEBATCH_*, and accept the command-line arguments `--node_count` and `--cpu_count`. The two configs are kept in separate sections of the config file: # invokeai.yaml InvokeBatch: Resources: node_count: 1 cpu_count: 8 InvokeAI: Paths: root: /home/lstein/invokeai-main conf_path: configs/models.yaml legacy_conf_dir: configs/stable-diffusion outdir: outputs ... """ from __future__ import annotations import os from pathlib import Path from typing import Any, ClassVar, Dict, List, Literal, Optional, Union, get_type_hints from omegaconf import DictConfig, OmegaConf from pydantic import Field, TypeAdapter from pydantic.config import JsonDict from pydantic_settings import SettingsConfigDict from .config_base import InvokeAISettings INIT_FILE = Path("invokeai.yaml") DB_FILE = Path("invokeai.db") LEGACY_INIT_FILE = Path("invokeai.init") DEFAULT_MAX_VRAM = 0.5 class Categories(object): """Category headers for configuration variable groups.""" WebServer: JsonDict = {"category": "Web Server"} Features: JsonDict = {"category": "Features"} Paths: JsonDict = {"category": "Paths"} Logging: JsonDict = {"category": "Logging"} Development: JsonDict = {"category": "Development"} Other: JsonDict = {"category": "Other"} ModelCache: JsonDict = {"category": "Model Cache"} Device: JsonDict = {"category": "Device"} Generation: JsonDict = {"category": "Generation"} Queue: JsonDict = {"category": "Queue"} Nodes: JsonDict = {"category": "Nodes"} MemoryPerformance: JsonDict = {"category": "Memory/Performance"} class InvokeAIAppConfig(InvokeAISettings): """Configuration object for InvokeAI App.""" singleton_config: ClassVar[Optional[InvokeAIAppConfig]] = None singleton_init: ClassVar[Optional[Dict[str, Any]]] = None # fmt: off type: Literal["InvokeAI"] = "InvokeAI" # WEB host : str = Field(default="127.0.0.1", description="IP address to bind to", json_schema_extra=Categories.WebServer) port : int = Field(default=9090, description="Port to bind to", json_schema_extra=Categories.WebServer) allow_origins : List[str] = Field(default=[], description="Allowed CORS origins", json_schema_extra=Categories.WebServer) allow_credentials : bool = Field(default=True, description="Allow CORS credentials", json_schema_extra=Categories.WebServer) allow_methods : List[str] = Field(default=["*"], description="Methods allowed for CORS", json_schema_extra=Categories.WebServer) allow_headers : List[str] = Field(default=["*"], description="Headers allowed for CORS", json_schema_extra=Categories.WebServer) # SSL options correspond to https://www.uvicorn.org/settings/#https ssl_certfile : Optional[Path] = Field(default=None, description="SSL certificate file (for HTTPS)", json_schema_extra=Categories.WebServer) ssl_keyfile : Optional[Path] = Field(default=None, description="SSL key file", json_schema_extra=Categories.WebServer) # FEATURES esrgan : bool = Field(default=True, description="Enable/disable upscaling code", json_schema_extra=Categories.Features) internet_available : bool = Field(default=True, description="If true, attempt to download models on the fly; otherwise only use local models", json_schema_extra=Categories.Features) log_tokenization : bool = Field(default=False, description="Enable logging of parsed prompt tokens.", json_schema_extra=Categories.Features) patchmatch : bool = Field(default=True, description="Enable/disable patchmatch inpaint code", json_schema_extra=Categories.Features) ignore_missing_core_models : bool = Field(default=False, description='Ignore missing models in models/core/convert', json_schema_extra=Categories.Features) # PATHS root : Optional[Path] = Field(default=None, description='InvokeAI runtime root directory', json_schema_extra=Categories.Paths) autoimport_dir : Path = Field(default=Path('autoimport'), description='Path to a directory of models files to be imported on startup.', json_schema_extra=Categories.Paths) conf_path : Path = Field(default=Path('configs/models.yaml'), description='Path to models definition file', json_schema_extra=Categories.Paths) models_dir : Path = Field(default=Path('models'), description='Path to the models directory', json_schema_extra=Categories.Paths) convert_cache_dir : Path = Field(default=Path('models/.cache'), description='Path to the converted models cache directory', json_schema_extra=Categories.Paths) legacy_conf_dir : Path = Field(default=Path('configs/stable-diffusion'), description='Path to directory of legacy checkpoint config files', json_schema_extra=Categories.Paths) db_dir : Path = Field(default=Path('databases'), description='Path to InvokeAI databases directory', json_schema_extra=Categories.Paths) outdir : Path = Field(default=Path('outputs'), description='Default folder for output images', json_schema_extra=Categories.Paths) use_memory_db : bool = Field(default=False, description='Use in-memory database for storing image metadata', json_schema_extra=Categories.Paths) custom_nodes_dir : Path = Field(default=Path('nodes'), description='Path to directory for custom nodes', json_schema_extra=Categories.Paths) from_file : Optional[Path] = Field(default=None, description='Take command input from the indicated file (command-line client only)', json_schema_extra=Categories.Paths) # LOGGING log_handlers : List[str] = Field(default=["console"], description='Log handler. Valid options are "console", "file=", "syslog=path|address:host:port", "http="', json_schema_extra=Categories.Logging) # note - would be better to read the log_format values from logging.py, but this creates circular dependencies issues log_format : Literal['plain', 'color', 'syslog', 'legacy'] = Field(default="color", description='Log format. Use "plain" for text-only, "color" for colorized output, "legacy" for 2.3-style logging and "syslog" for syslog-style', json_schema_extra=Categories.Logging) log_level : Literal["debug", "info", "warning", "error", "critical"] = Field(default="info", description="Emit logging messages at this level or higher", json_schema_extra=Categories.Logging) log_sql : bool = Field(default=False, description="Log SQL queries", json_schema_extra=Categories.Logging) # Development dev_reload : bool = Field(default=False, description="Automatically reload when Python sources are changed.", json_schema_extra=Categories.Development) profile_graphs : bool = Field(default=False, description="Enable graph profiling", json_schema_extra=Categories.Development) profile_prefix : Optional[str] = Field(default=None, description="An optional prefix for profile output files.", json_schema_extra=Categories.Development) profiles_dir : Path = Field(default=Path('profiles'), description="Directory for graph profiles", json_schema_extra=Categories.Development) version : bool = Field(default=False, description="Show InvokeAI version and exit", json_schema_extra=Categories.Other) # CACHE ram : float = Field(default=7.5, gt=0, description="Maximum memory amount used by model cache for rapid switching (floating point number, GB)", json_schema_extra=Categories.ModelCache, ) vram : float = Field(default=0.25, ge=0, description="Amount of VRAM reserved for model storage (floating point number, GB)", json_schema_extra=Categories.ModelCache, ) convert_cache : float = Field(default=10.0, ge=0, description="Maximum size of on-disk converted models cache (GB)", json_schema_extra=Categories.ModelCache) lazy_offload : bool = Field(default=True, description="Keep models in VRAM until their space is needed", json_schema_extra=Categories.ModelCache, ) log_memory_usage : bool = Field(default=False, description="If True, a memory snapshot will be captured before and after every model cache operation, and the result will be logged (at debug level). There is a time cost to capturing the memory snapshots, so it is recommended to only enable this feature if you are actively inspecting the model cache's behaviour.", json_schema_extra=Categories.ModelCache) # DEVICE device : Literal["auto", "cpu", "cuda", "cuda:1", "mps"] = Field(default="auto", description="Generation device", json_schema_extra=Categories.Device) precision : Literal["auto", "float16", "bfloat16", "float32", "autocast"] = Field(default="auto", description="Floating point precision", json_schema_extra=Categories.Device) # GENERATION sequential_guidance : bool = Field(default=False, description="Whether to calculate guidance in serial instead of in parallel, lowering memory requirements", json_schema_extra=Categories.Generation) attention_type : Literal["auto", "normal", "xformers", "sliced", "torch-sdp"] = Field(default="auto", description="Attention type", json_schema_extra=Categories.Generation) attention_slice_size: Literal["auto", "balanced", "max", 1, 2, 3, 4, 5, 6, 7, 8] = Field(default="auto", description='Slice size, valid when attention_type=="sliced"', json_schema_extra=Categories.Generation) force_tiled_decode : bool = Field(default=False, description="Whether to enable tiled VAE decode (reduces memory consumption with some performance penalty)", json_schema_extra=Categories.Generation) png_compress_level : int = Field(default=1, description="The compress_level setting of PIL.Image.save(), used for PNG encoding. All settings are lossless. 0 = fastest, largest filesize, 9 = slowest, smallest filesize", json_schema_extra=Categories.Generation) # QUEUE max_queue_size : int = Field(default=10000, gt=0, description="Maximum number of items in the session queue", json_schema_extra=Categories.Queue) # NODES allow_nodes : Optional[List[str]] = Field(default=None, description="List of nodes to allow. Omit to allow all.", json_schema_extra=Categories.Nodes) deny_nodes : Optional[List[str]] = Field(default=None, description="List of nodes to deny. Omit to deny none.", json_schema_extra=Categories.Nodes) node_cache_size : int = Field(default=512, description="How many cached nodes to keep in memory", json_schema_extra=Categories.Nodes) # MODEL IMPORT civitai_api_key : Optional[str] = Field(default=os.environ.get("CIVITAI_API_KEY"), description="API key for CivitAI", json_schema_extra=Categories.Other) # DEPRECATED FIELDS - STILL HERE IN ORDER TO OBTAN VALUES FROM PRE-3.1 CONFIG FILES always_use_cpu : bool = Field(default=False, description="If true, use the CPU for rendering even if a GPU is available.", json_schema_extra=Categories.MemoryPerformance) max_cache_size : Optional[float] = Field(default=None, gt=0, description="Maximum memory amount used by model cache for rapid switching", json_schema_extra=Categories.MemoryPerformance) max_vram_cache_size : Optional[float] = Field(default=None, ge=0, description="Amount of VRAM reserved for model storage", json_schema_extra=Categories.MemoryPerformance) xformers_enabled : bool = Field(default=True, description="Enable/disable memory-efficient attention", json_schema_extra=Categories.MemoryPerformance) tiled_decode : bool = Field(default=False, description="Whether to enable tiled VAE decode (reduces memory consumption with some performance penalty)", json_schema_extra=Categories.MemoryPerformance) lora_dir : Optional[Path] = Field(default=None, description='Path to a directory of LoRA/LyCORIS models to be imported on startup.', json_schema_extra=Categories.Paths) embedding_dir : Optional[Path] = Field(default=None, description='Path to a directory of Textual Inversion embeddings to be imported on startup.', json_schema_extra=Categories.Paths) controlnet_dir : Optional[Path] = Field(default=None, description='Path to a directory of ControlNet embeddings to be imported on startup.', json_schema_extra=Categories.Paths) # this is not referred to in the source code and can be removed entirely #free_gpu_mem : Optional[bool] = Field(default=None, description="If true, purge model from GPU after each generation.", json_schema_extra=Categories.MemoryPerformance) # See InvokeAIAppConfig subclass below for CACHE and DEVICE categories # fmt: on model_config = SettingsConfigDict(validate_assignment=True, env_prefix="INVOKEAI") def parse_args( self, argv: Optional[list[str]] = None, conf: Optional[DictConfig] = None, clobber: Optional[bool] = False, ) -> None: """ Update settings with contents of init file, environment, and command-line settings. :param conf: alternate Omegaconf dictionary object :param argv: aternate sys.argv list :param clobber: ovewrite any initialization parameters passed during initialization """ # Set the runtime root directory. We parse command-line switches here # in order to pick up the --root_dir option. super().parse_args(argv) loaded_conf = None if conf is None: try: loaded_conf = OmegaConf.load(self.root_dir / INIT_FILE) except Exception: pass if isinstance(loaded_conf, DictConfig): InvokeAISettings.initconf = loaded_conf else: InvokeAISettings.initconf = conf # parse args again in order to pick up settings in configuration file super().parse_args(argv) if self.singleton_init and not clobber: hints = get_type_hints(self.__class__) for k in self.singleton_init: setattr( self, k, TypeAdapter(hints[k]).validate_python(self.singleton_init[k]), ) @classmethod def get_config(cls, **kwargs: Any) -> InvokeAIAppConfig: """Return a singleton InvokeAIAppConfig configuration object.""" if ( cls.singleton_config is None or type(cls.singleton_config) is not cls or (kwargs and cls.singleton_init != kwargs) ): cls.singleton_config = cls(**kwargs) cls.singleton_init = kwargs return cls.singleton_config @property def root_path(self) -> Path: """Path to the runtime root directory.""" if self.root: root = Path(self.root).expanduser().absolute() else: root = self.find_root().expanduser().absolute() self.root = root # insulate ourselves from relative paths that may change return root.resolve() @property def root_dir(self) -> Path: """Alias for above.""" return self.root_path def _resolve(self, partial_path: Path) -> Path: return (self.root_path / partial_path).resolve() @property def init_file_path(self) -> Path: """Path to invokeai.yaml.""" resolved_path = self._resolve(INIT_FILE) assert resolved_path is not None return resolved_path @property def output_path(self) -> Optional[Path]: """Path to defaults outputs directory.""" return self._resolve(self.outdir) @property def db_path(self) -> Path: """Path to the invokeai.db file.""" db_dir = self._resolve(self.db_dir) assert db_dir is not None return db_dir / DB_FILE @property def model_conf_path(self) -> Path: """Path to models configuration file.""" return self._resolve(self.conf_path) @property def legacy_conf_path(self) -> Path: """Path to directory of legacy configuration files (e.g. v1-inference.yaml).""" return self._resolve(self.legacy_conf_dir) @property def models_path(self) -> Path: """Path to the models directory.""" return self._resolve(self.models_dir) @property def models_convert_cache_path(self) -> Path: """Path to the converted cache models directory.""" return self._resolve(self.convert_cache_dir) @property def custom_nodes_path(self) -> Path: """Path to the custom nodes directory.""" custom_nodes_path = self._resolve(self.custom_nodes_dir) assert custom_nodes_path is not None return custom_nodes_path # the following methods support legacy calls leftover from the Globals era @property def full_precision(self) -> bool: """Return true if precision set to float32.""" return self.precision == "float32" @property def try_patchmatch(self) -> bool: """Return true if patchmatch true.""" return self.patchmatch @property def nsfw_checker(self) -> bool: """Return value for NSFW checker. The NSFW node is always active and disabled from Web UI.""" return True @property def invisible_watermark(self) -> bool: """Return value of invisible watermark. It is always active and disabled from Web UI.""" return True @property def ram_cache_size(self) -> float: """Return the ram cache size using the legacy or modern setting (GB).""" return self.max_cache_size or self.ram @property def vram_cache_size(self) -> float: """Return the vram cache size using the legacy or modern setting (GB).""" return self.max_vram_cache_size or self.vram @property def convert_cache_size(self) -> float: """Return the convert cache size on disk (GB).""" return self.convert_cache @property def use_cpu(self) -> bool: """Return true if the device is set to CPU or the always_use_cpu flag is set.""" return self.always_use_cpu or self.device == "cpu" @property def disable_xformers(self) -> bool: """Return true if enable_xformers is false (reversed logic) and attention type is not set to xformers.""" disabled_in_config = not self.xformers_enabled return disabled_in_config and self.attention_type != "xformers" @property def profiles_path(self) -> Path: """Path to the graph profiles directory.""" return self._resolve(self.profiles_dir) @staticmethod def find_root() -> Path: """Choose the runtime root directory when not specified on command line or init file.""" return _find_root() def get_invokeai_config(**kwargs: Any) -> InvokeAIAppConfig: """Legacy function which returns InvokeAIAppConfig.get_config().""" return InvokeAIAppConfig.get_config(**kwargs) def _find_root() -> Path: venv = Path(os.environ.get("VIRTUAL_ENV") or ".") if os.environ.get("INVOKEAI_ROOT"): root = Path(os.environ["INVOKEAI_ROOT"]) elif any((venv.parent / x).exists() for x in [INIT_FILE, LEGACY_INIT_FILE]): root = (venv.parent).resolve() else: root = Path("~/invokeai").expanduser().resolve() return root