from __future__ import annotations import copy from dataclasses import dataclass from typing import Any, Callable, Optional import torch from diffusers.schedulers.scheduling_utils import SchedulerMixin from invokeai.backend.stable_diffusion.diffusers_pipeline import ( ControlNetData, PipelineIntermediateState, StableDiffusionGeneratorPipeline, ) from invokeai.backend.stable_diffusion.diffusion.conditioning_data import TextConditioningData from invokeai.backend.tiles.utils import TBLR @dataclass class MultiDiffusionRegionConditioning: # Region coords in latent space. region: TBLR text_conditioning_data: TextConditioningData control_data: list[ControlNetData] class MultiDiffusionPipeline(StableDiffusionGeneratorPipeline): """A Stable Diffusion pipeline that uses Multi-Diffusion (https://arxiv.org/pdf/2302.08113) for denoising.""" # Plan: # - latents_from_embeddings(...) will accept all of the same global params, but the "local" params will be bundled # together with tile locations. # - What is "local"?: # - conditioning_data could be local, but for upscaling will be global # - control_data makes more sense as global, then we split it up as we split up the latents # - ip_adapter_data sort of has 3 modes to consider: # - global style: applied in the same way to all tiles # - local style: apply different IP-Adapters to each tile # - global structure: we want to crop the input image and run the IP-Adapter on each separately # - t2i_adapter_data won't be supported at first - it's not popular enough # - All the inpainting params are global and need to be cropped accordingly # - Local: # - latents # - conditioning_data # - noise # - control_data # - ip_adapter_data (skip for now) # - t2i_adapter_data (skip for now) # - mask # - masked_latents # - is_gradient_mask ??? # - Can we support inpainting models in this node? # - TBD, need to think about this more # - step(...) remains mostly unmodified, is not overriden in this sub-class. # - May need a cleaner AddsMaskGuidance implementation to handle this plan... we'll see. def multi_diffusion_denoise( self, multi_diffusion_conditioning: list[MultiDiffusionRegionConditioning], latents: torch.Tensor, scheduler_step_kwargs: dict[str, Any], noise: Optional[torch.Tensor], timesteps: torch.Tensor, init_timestep: torch.Tensor, callback: Callable[[PipelineIntermediateState], None], ) -> torch.Tensor: # TODO(ryand): Figure out why this condition is necessary, and document it. My guess is that it's to handle # cases where densoisings_start and denoising_end are set such that there are no timesteps. if init_timestep.shape[0] == 0 or timesteps.shape[0] == 0: return latents batch_size, _, latent_height, latent_width = latents.shape batched_init_timestep = init_timestep.expand(batch_size) # noise can be None if the latents have already been noised (e.g. when running the SDXL refiner). if noise is not None: # TODO(ryand): I'm pretty sure we should be applying init_noise_sigma in cases where we are starting with # full noise. Investigate the history of why this got commented out. # latents = noise * self.scheduler.init_noise_sigma # it's like in t2l according to diffusers latents = self.scheduler.add_noise(latents, noise, batched_init_timestep) # TODO(ryand): Look into the implications of passing in latents here that are larger than they will be after # cropping into regions. self._adjust_memory_efficient_attention(latents) # Populate a weighted mask that will be used to combine the results from each region after every step. # For now, we assume that each regions has the same weight (1.0). region_weight_mask = torch.zeros( (1, 1, latent_height, latent_width), device=latents.device, dtype=latents.dtype ) for region_conditioning in multi_diffusion_conditioning: region = region_conditioning.region region_weight_mask[:, :, region.top : region.bottom, region.left : region.right] += 1.0 # Many of the diffusers schedulers are stateful (i.e. they update internal state in each call to step()). Since # we are calling step() multiple times at the same timestep (once for each region batch), we must maintain a # separate scheduler state for each region batch. region_batch_schedulers: list[SchedulerMixin] = [ copy.deepcopy(self.scheduler) for _ in multi_diffusion_conditioning ] callback( PipelineIntermediateState( step=-1, order=self.scheduler.order, total_steps=len(timesteps), timestep=self.scheduler.config.num_train_timesteps, latents=latents, ) ) for i, t in enumerate(self.progress_bar(timesteps)): batched_t = t.expand(batch_size) merged_latents = torch.zeros_like(latents) merged_pred_original: torch.Tensor | None = None for region_idx, region_conditioning in enumerate(multi_diffusion_conditioning): # Switch to the scheduler for the region batch. self.scheduler = region_batch_schedulers[region_idx] # Run a denoising step on the region. step_output = self._region_step( region_conditioning=region_conditioning, t=batched_t, latents=latents, step_index=i, total_step_count=len(timesteps), scheduler_step_kwargs=scheduler_step_kwargs, ) # Store the results from the region. region = region_conditioning.region merged_latents[:, :, region.top : region.bottom, region.left : region.right] += step_output.prev_sample pred_orig_sample = getattr(step_output, "pred_original_sample", None) if pred_orig_sample is not None: # If one region has pred_original_sample, then we can assume that all regions will have it, because # they all use the same scheduler. if merged_pred_original is None: merged_pred_original = torch.zeros_like(latents) merged_pred_original[:, :, region.top : region.bottom, region.left : region.right] += ( pred_orig_sample ) # Normalize the merged results. latents = torch.where(region_weight_mask > 0, merged_latents / region_weight_mask, merged_latents) predicted_original = None if merged_pred_original is not None: predicted_original = torch.where( region_weight_mask > 0, merged_pred_original / region_weight_mask, merged_pred_original ) callback( PipelineIntermediateState( step=i, order=self.scheduler.order, total_steps=len(timesteps), timestep=int(t), latents=latents, predicted_original=predicted_original, ) ) return latents @torch.inference_mode() def _region_step( self, region_conditioning: MultiDiffusionRegionConditioning, t: torch.Tensor, latents: torch.Tensor, step_index: int, total_step_count: int, scheduler_step_kwargs: dict[str, Any], ): use_regional_prompting = ( region_conditioning.text_conditioning_data.cond_regions is not None or region_conditioning.text_conditioning_data.uncond_regions is not None ) if use_regional_prompting: raise NotImplementedError("Regional prompting is not yet supported in Multi-Diffusion.") # Crop the inputs to the region. region_latents = latents[ :, :, region_conditioning.region.top : region_conditioning.region.bottom, region_conditioning.region.left : region_conditioning.region.right, ] # Run the denoising step on the region. return self.step( t=t, latents=region_latents, conditioning_data=region_conditioning.text_conditioning_data, step_index=step_index, total_step_count=total_step_count, scheduler_step_kwargs=scheduler_step_kwargs, mask_guidance=None, mask=None, masked_latents=None, control_data=region_conditioning.control_data, )