""" invokeai.backend.globals defines a small number of global variables that would otherwise have to be passed through long and complex call chains. It defines a Namespace object named "Globals" that contains the attributes: - root - the root directory under which "models" and "outputs" can be found - initfile - path to the initialization file - try_patchmatch - option to globally disable loading of 'patchmatch' module - always_use_cpu - force use of CPU even if GPU is available """ import os import os.path as osp from argparse import Namespace from pathlib import Path from typing import Union Globals = Namespace() # Where to look for the initialization file and other key components Globals.initfile = "invokeai.init" Globals.models_file = "models.yaml" Globals.models_dir = "models" Globals.config_dir = "configs" Globals.autoscan_dir = "weights" Globals.converted_ckpts_dir = "converted_ckpts" # Set the default root directory. This can be overwritten by explicitly # passing the `--root ` argument on the command line. # logic is: # 1) use INVOKEAI_ROOT environment variable (no check for this being a valid directory) # 2) use VIRTUAL_ENV environment variable, with a check for initfile being there # 3) use ~/invokeai if os.environ.get("INVOKEAI_ROOT"): Globals.root = osp.abspath(os.environ.get("INVOKEAI_ROOT")) elif ( os.environ.get("VIRTUAL_ENV") and Path(os.environ.get("VIRTUAL_ENV"), "..", Globals.initfile).exists() ): Globals.root = osp.abspath(osp.join(os.environ.get("VIRTUAL_ENV"), "..")) else: Globals.root = osp.abspath(osp.expanduser("~/invokeai")) # Try loading patchmatch Globals.try_patchmatch = True # Use CPU even if GPU is available (main use case is for debugging MPS issues) Globals.always_use_cpu = False # Whether the internet is reachable for dynamic downloads # The CLI will test connectivity at startup time. Globals.internet_available = True # Whether to disable xformers Globals.disable_xformers = False # Low-memory tradeoff for guidance calculations. Globals.sequential_guidance = False # whether we are forcing full precision Globals.full_precision = False # whether we should convert ckpt files into diffusers models on the fly Globals.ckpt_convert = True # logging tokenization everywhere Globals.log_tokenization = False def global_config_file() -> Path: return Path(Globals.root, Globals.config_dir, Globals.models_file) def global_config_dir() -> Path: return Path(Globals.root, Globals.config_dir) def global_models_dir() -> Path: return Path(Globals.root, Globals.models_dir) def global_autoscan_dir() -> Path: return Path(Globals.root, Globals.autoscan_dir) def global_converted_ckpts_dir() -> Path: return Path(global_models_dir(), Globals.converted_ckpts_dir) def global_set_root(root_dir: Union[str, Path]): Globals.root = root_dir def global_resolve_path(path: Union[str,Path]): if path is None: return None return Path(Globals.root,path).resolve() def global_cache_dir(subdir: Union[str, Path] = "") -> Path: """ Returns Path to the model cache directory. If a subdirectory is provided, it will be appended to the end of the path, allowing for Hugging Face-style conventions. Currently, Hugging Face has moved all models into the "hub" subfolder, so for any pretrained HF model, use: global_cache_dir('hub') The legacy location for transformers used to be global_cache_dir('transformers') and global_cache_dir('diffusers') for diffusers. """ home: str = os.getenv("HF_HOME") if home is None: home = os.getenv("XDG_CACHE_HOME") if home is not None: # Set `home` to $XDG_CACHE_HOME/huggingface, which is the default location mentioned in Hugging Face Hub Client Library. # See: https://huggingface.co/docs/huggingface_hub/main/en/package_reference/environment_variables#xdgcachehome home += os.sep + "huggingface" if home is not None: return Path(home, subdir) else: return Path(Globals.root, "models", subdir)