from __future__ import annotations import math from contextlib import nullcontext from dataclasses import dataclass from typing import Any, Callable, List, Optional, Union import einops import PIL.Image import psutil import torch import torchvision.transforms as T from diffusers.models import AutoencoderKL, UNet2DConditionModel from diffusers.models.controlnet import ControlNetModel from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipeline from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.schedulers.scheduling_utils import SchedulerMixin from diffusers.utils.import_utils import is_xformers_available from pydantic import Field from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer from invokeai.app.services.config.config_default import get_config from invokeai.backend.ip_adapter.ip_adapter import IPAdapter from invokeai.backend.ip_adapter.unet_patcher import UNetPatcher from invokeai.backend.stable_diffusion.diffusion.conditioning_data import ConditioningData from invokeai.backend.stable_diffusion.diffusion.shared_invokeai_diffusion import InvokeAIDiffuserComponent from invokeai.backend.util.attention import auto_detect_slice_size from invokeai.backend.util.devices import normalize_device @dataclass class PipelineIntermediateState: step: int order: int total_steps: int timestep: int latents: torch.Tensor predicted_original: Optional[torch.Tensor] = None @dataclass class AddsMaskLatents: """Add the channels required for inpainting model input. The inpainting model takes the normal latent channels as input, _plus_ a one-channel mask and the latent encoding of the base image. This class assumes the same mask and base image should apply to all items in the batch. """ forward: Callable[[torch.Tensor, torch.Tensor, torch.Tensor], torch.Tensor] mask: torch.Tensor initial_image_latents: torch.Tensor def __call__( self, latents: torch.Tensor, t: torch.Tensor, text_embeddings: torch.Tensor, **kwargs, ) -> torch.Tensor: model_input = self.add_mask_channels(latents) return self.forward(model_input, t, text_embeddings, **kwargs) def add_mask_channels(self, latents): batch_size = latents.size(0) # duplicate mask and latents for each batch mask = einops.repeat(self.mask, "b c h w -> (repeat b) c h w", repeat=batch_size) image_latents = einops.repeat(self.initial_image_latents, "b c h w -> (repeat b) c h w", repeat=batch_size) # add mask and image as additional channels model_input, _ = einops.pack([latents, mask, image_latents], "b * h w") return model_input def are_like_tensors(a: torch.Tensor, b: object) -> bool: return isinstance(b, torch.Tensor) and (a.size() == b.size()) @dataclass class AddsMaskGuidance: mask: torch.FloatTensor mask_latents: torch.FloatTensor scheduler: SchedulerMixin noise: torch.Tensor gradient_mask: bool def __call__(self, latents: torch.Tensor, t: torch.Tensor) -> torch.Tensor: return self.apply_mask(latents, t) def apply_mask(self, latents: torch.Tensor, t) -> torch.Tensor: batch_size = latents.size(0) mask = einops.repeat(self.mask, "b c h w -> (repeat b) c h w", repeat=batch_size) if t.dim() == 0: # some schedulers expect t to be one-dimensional. # TODO: file diffusers bug about inconsistency? t = einops.repeat(t, "-> batch", batch=batch_size) # Noise shouldn't be re-randomized between steps here. The multistep schedulers # get very confused about what is happening from step to step when we do that. mask_latents = self.scheduler.add_noise(self.mask_latents, self.noise, t) # TODO: Do we need to also apply scheduler.scale_model_input? Or is add_noise appropriately scaled already? # mask_latents = self.scheduler.scale_model_input(mask_latents, t) mask_latents = einops.repeat(mask_latents, "b c h w -> (repeat b) c h w", repeat=batch_size) if self.gradient_mask: threshhold = (t.item()) / self.scheduler.config.num_train_timesteps mask_bool = mask > threshhold # I don't know when mask got inverted, but it did masked_input = torch.where(mask_bool, latents, mask_latents) else: masked_input = torch.lerp(mask_latents.to(dtype=latents.dtype), latents, mask.to(dtype=latents.dtype)) return masked_input def trim_to_multiple_of(*args, multiple_of=8): return tuple((x - x % multiple_of) for x in args) def image_resized_to_grid_as_tensor(image: PIL.Image.Image, normalize: bool = True, multiple_of=8) -> torch.FloatTensor: """ :param image: input image :param normalize: scale the range to [-1, 1] instead of [0, 1] :param multiple_of: resize the input so both dimensions are a multiple of this """ w, h = trim_to_multiple_of(*image.size, multiple_of=multiple_of) transformation = T.Compose( [ T.Resize((h, w), T.InterpolationMode.LANCZOS, antialias=True), T.ToTensor(), ] ) tensor = transformation(image) if normalize: tensor = tensor * 2.0 - 1.0 return tensor def is_inpainting_model(unet: UNet2DConditionModel): return unet.conv_in.in_channels == 9 @dataclass class ControlNetData: model: ControlNetModel = Field(default=None) image_tensor: torch.Tensor = Field(default=None) weight: Union[float, List[float]] = Field(default=1.0) begin_step_percent: float = Field(default=0.0) end_step_percent: float = Field(default=1.0) control_mode: str = Field(default="balanced") resize_mode: str = Field(default="just_resize") @dataclass class IPAdapterData: ip_adapter_model: IPAdapter = Field(default=None) # TODO: change to polymorphic so can do different weights per step (once implemented...) weight: Union[float, List[float]] = Field(default=1.0) # weight: float = Field(default=1.0) begin_step_percent: float = Field(default=0.0) end_step_percent: float = Field(default=1.0) @dataclass class T2IAdapterData: """A structure containing the information required to apply conditioning from a single T2I-Adapter model.""" adapter_state: dict[torch.Tensor] = Field() weight: Union[float, list[float]] = Field(default=1.0) begin_step_percent: float = Field(default=0.0) end_step_percent: float = Field(default=1.0) class StableDiffusionGeneratorPipeline(StableDiffusionPipeline): r""" Pipeline for text-to-image generation using Stable Diffusion. This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) Implementation note: This class started as a refactored copy of diffusers.StableDiffusionPipeline. Hopefully future versions of diffusers provide access to more of these functions so that we don't need to duplicate them here: https://github.com/huggingface/diffusers/issues/551#issuecomment-1281508384 Args: vae ([`AutoencoderKL`]): Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. text_encoder ([`CLIPTextModel`]): Frozen text-encoder. Stable Diffusion uses the text portion of [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. tokenizer (`CLIPTokenizer`): Tokenizer of class [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents. scheduler ([`SchedulerMixin`]): A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. safety_checker ([`StableDiffusionSafetyChecker`]): Classification module that estimates whether generated images could be considered offensive or harmful. Please, refer to the [model card](https://huggingface.co/CompVis/stable-diffusion-v1-4) for details. feature_extractor ([`CLIPFeatureExtractor`]): Model that extracts features from generated images to be used as inputs for the `safety_checker`. """ def __init__( self, vae: AutoencoderKL, text_encoder: CLIPTextModel, tokenizer: CLIPTokenizer, unet: UNet2DConditionModel, scheduler: KarrasDiffusionSchedulers, safety_checker: Optional[StableDiffusionSafetyChecker], feature_extractor: Optional[CLIPFeatureExtractor], requires_safety_checker: bool = False, control_model: ControlNetModel = None, ): super().__init__( vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor, requires_safety_checker=requires_safety_checker, ) self.invokeai_diffuser = InvokeAIDiffuserComponent(self.unet, self._unet_forward) self.control_model = control_model self.use_ip_adapter = False def _adjust_memory_efficient_attention(self, latents: torch.Tensor): """ if xformers is available, use it, otherwise use sliced attention. """ config = get_config() if config.attention_type == "xformers": self.enable_xformers_memory_efficient_attention() return elif config.attention_type == "sliced": slice_size = config.attention_slice_size if slice_size == "auto": slice_size = auto_detect_slice_size(latents) elif slice_size == "balanced": slice_size = "auto" self.enable_attention_slicing(slice_size=slice_size) return elif config.attention_type == "normal": self.disable_attention_slicing() return elif config.attention_type == "torch-sdp": if hasattr(torch.nn.functional, "scaled_dot_product_attention"): # diffusers enables sdp automatically return else: raise Exception("torch-sdp attention slicing not available") # the remainder if this code is called when attention_type=='auto' if self.unet.device.type == "cuda": if is_xformers_available(): self.enable_xformers_memory_efficient_attention() return elif hasattr(torch.nn.functional, "scaled_dot_product_attention"): # diffusers enables sdp automatically return if self.unet.device.type == "cpu" or self.unet.device.type == "mps": mem_free = psutil.virtual_memory().free elif self.unet.device.type == "cuda": mem_free, _ = torch.cuda.mem_get_info(normalize_device(self.unet.device)) else: raise ValueError(f"unrecognized device {self.unet.device}") # input tensor of [1, 4, h/8, w/8] # output tensor of [16, (h/8 * w/8), (h/8 * w/8)] bytes_per_element_needed_for_baddbmm_duplication = latents.element_size() + 4 max_size_required_for_baddbmm = ( 16 * latents.size(dim=2) * latents.size(dim=3) * latents.size(dim=2) * latents.size(dim=3) * bytes_per_element_needed_for_baddbmm_duplication ) if max_size_required_for_baddbmm > (mem_free * 3.0 / 4.0): # 3.3 / 4.0 is from old Invoke code self.enable_attention_slicing(slice_size="max") elif torch.backends.mps.is_available(): # diffusers recommends always enabling for mps self.enable_attention_slicing(slice_size="max") else: self.disable_attention_slicing() def to(self, torch_device: Optional[Union[str, torch.device]] = None, silence_dtype_warnings=False): raise Exception("Should not be called") def latents_from_embeddings( self, latents: torch.Tensor, num_inference_steps: int, conditioning_data: ConditioningData, *, noise: Optional[torch.Tensor], timesteps: torch.Tensor, init_timestep: torch.Tensor, additional_guidance: List[Callable] = None, callback: Callable[[PipelineIntermediateState], None] = None, control_data: List[ControlNetData] = None, ip_adapter_data: Optional[list[IPAdapterData]] = None, t2i_adapter_data: Optional[list[T2IAdapterData]] = None, mask: Optional[torch.Tensor] = None, masked_latents: Optional[torch.Tensor] = None, gradient_mask: Optional[bool] = False, seed: Optional[int] = None, ) -> torch.Tensor: if init_timestep.shape[0] == 0: return latents if additional_guidance is None: additional_guidance = [] orig_latents = latents.clone() batch_size = latents.shape[0] batched_t = init_timestep.expand(batch_size) if noise is not None: # latents = noise * self.scheduler.init_noise_sigma # it's like in t2l according to diffusers latents = self.scheduler.add_noise(latents, noise, batched_t) if mask is not None: # if no noise provided, noisify unmasked area based on seed(or 0 as fallback) if noise is None: noise = torch.randn( orig_latents.shape, dtype=torch.float32, device="cpu", generator=torch.Generator(device="cpu").manual_seed(seed or 0), ).to(device=orig_latents.device, dtype=orig_latents.dtype) latents = self.scheduler.add_noise(latents, noise, batched_t) latents = torch.lerp( orig_latents, latents.to(dtype=orig_latents.dtype), mask.to(dtype=orig_latents.dtype) ) if is_inpainting_model(self.unet): if masked_latents is None: raise Exception("Source image required for inpaint mask when inpaint model used!") self.invokeai_diffuser.model_forward_callback = AddsMaskLatents( self._unet_forward, mask, masked_latents ) else: additional_guidance.append(AddsMaskGuidance(mask, orig_latents, self.scheduler, noise, gradient_mask)) try: latents = self.generate_latents_from_embeddings( latents, timesteps, conditioning_data, additional_guidance=additional_guidance, control_data=control_data, ip_adapter_data=ip_adapter_data, t2i_adapter_data=t2i_adapter_data, callback=callback, ) finally: self.invokeai_diffuser.model_forward_callback = self._unet_forward # restore unmasked part after the last step is completed # in-process masking happens before each step if mask is not None: if gradient_mask: latents = torch.where(mask > 0, latents, orig_latents) else: latents = torch.lerp( orig_latents, latents.to(dtype=orig_latents.dtype), mask.to(dtype=orig_latents.dtype) ) return latents def generate_latents_from_embeddings( self, latents: torch.Tensor, timesteps, conditioning_data: ConditioningData, *, additional_guidance: List[Callable] = None, control_data: List[ControlNetData] = None, ip_adapter_data: Optional[list[IPAdapterData]] = None, t2i_adapter_data: Optional[list[T2IAdapterData]] = None, callback: Callable[[PipelineIntermediateState], None] = None, ) -> torch.Tensor: self._adjust_memory_efficient_attention(latents) if additional_guidance is None: additional_guidance = [] batch_size = latents.shape[0] if timesteps.shape[0] == 0: return latents ip_adapter_unet_patcher = None extra_conditioning_info = conditioning_data.text_embeddings.extra_conditioning if extra_conditioning_info is not None and extra_conditioning_info.wants_cross_attention_control: attn_ctx = self.invokeai_diffuser.custom_attention_context( self.invokeai_diffuser.model, extra_conditioning_info=extra_conditioning_info, ) self.use_ip_adapter = False elif ip_adapter_data is not None: # TODO(ryand): Should we raise an exception if both custom attention and IP-Adapter attention are active? # As it is now, the IP-Adapter will silently be skipped. ip_adapter_unet_patcher = UNetPatcher([ipa.ip_adapter_model for ipa in ip_adapter_data]) attn_ctx = ip_adapter_unet_patcher.apply_ip_adapter_attention(self.invokeai_diffuser.model) self.use_ip_adapter = True else: attn_ctx = nullcontext() # NOTE error is not here! if conditioning_data.unconditioned_embeddings.embeds.device != \ conditioning_data.text_embeddings.embeds.device: print('DEBUG; HERE IS THE ERROR 1') with attn_ctx: if callback is not None: callback( PipelineIntermediateState( step=-1, order=self.scheduler.order, total_steps=len(timesteps), timestep=self.scheduler.config.num_train_timesteps, latents=latents, ) ) # print("timesteps:", timesteps) for i, t in enumerate(self.progress_bar(timesteps)): if conditioning_data.unconditioned_embeddings.embeds.device != \ conditioning_data.text_embeddings.embeds.device: print('DEBUG; HERE IS THE ERROR 2') batched_t = t.expand(batch_size) step_output = self.step( batched_t, latents, conditioning_data, step_index=i, total_step_count=len(timesteps), additional_guidance=additional_guidance, control_data=control_data, ip_adapter_data=ip_adapter_data, t2i_adapter_data=t2i_adapter_data, ip_adapter_unet_patcher=ip_adapter_unet_patcher, ) latents = step_output.prev_sample predicted_original = getattr(step_output, "pred_original_sample", None) if callback is not None: callback( PipelineIntermediateState( step=i, order=self.scheduler.order, total_steps=len(timesteps), timestep=int(t), latents=latents, predicted_original=predicted_original, ) ) return latents @torch.inference_mode() def step( self, t: torch.Tensor, latents: torch.Tensor, conditioning_data: ConditioningData, step_index: int, total_step_count: int, additional_guidance: List[Callable] = None, control_data: List[ControlNetData] = None, ip_adapter_data: Optional[list[IPAdapterData]] = None, t2i_adapter_data: Optional[list[T2IAdapterData]] = None, ip_adapter_unet_patcher: Optional[UNetPatcher] = None, ): # invokeai_diffuser has batched timesteps, but diffusers schedulers expect a single value timestep = t[0] if additional_guidance is None: additional_guidance = [] # one day we will expand this extension point, but for now it just does denoise masking for guidance in additional_guidance: latents = guidance(latents, timestep) # TODO: should this scaling happen here or inside self._unet_forward? # i.e. before or after passing it to InvokeAIDiffuserComponent latent_model_input = self.scheduler.scale_model_input(latents, timestep) # handle IP-Adapter if self.use_ip_adapter and ip_adapter_data is not None: # somewhat redundant but logic is clearer for i, single_ip_adapter_data in enumerate(ip_adapter_data): first_adapter_step = math.floor(single_ip_adapter_data.begin_step_percent * total_step_count) last_adapter_step = math.ceil(single_ip_adapter_data.end_step_percent * total_step_count) weight = ( single_ip_adapter_data.weight[step_index] if isinstance(single_ip_adapter_data.weight, List) else single_ip_adapter_data.weight ) if step_index >= first_adapter_step and step_index <= last_adapter_step: # Only apply this IP-Adapter if the current step is within the IP-Adapter's begin/end step range. ip_adapter_unet_patcher.set_scale(i, weight) else: # Otherwise, set the IP-Adapter's scale to 0, so it has no effect. ip_adapter_unet_patcher.set_scale(i, 0.0) # Handle ControlNet(s) down_block_additional_residuals = None mid_block_additional_residual = None if control_data is not None: down_block_additional_residuals, mid_block_additional_residual = self.invokeai_diffuser.do_controlnet_step( control_data=control_data, sample=latent_model_input, timestep=timestep, step_index=step_index, total_step_count=total_step_count, conditioning_data=conditioning_data, ) # Handle T2I-Adapter(s) down_intrablock_additional_residuals = None if t2i_adapter_data is not None: accum_adapter_state = None for single_t2i_adapter_data in t2i_adapter_data: # Determine the T2I-Adapter weights for the current denoising step. first_t2i_adapter_step = math.floor(single_t2i_adapter_data.begin_step_percent * total_step_count) last_t2i_adapter_step = math.ceil(single_t2i_adapter_data.end_step_percent * total_step_count) t2i_adapter_weight = ( single_t2i_adapter_data.weight[step_index] if isinstance(single_t2i_adapter_data.weight, list) else single_t2i_adapter_data.weight ) if step_index < first_t2i_adapter_step or step_index > last_t2i_adapter_step: # If the current step is outside of the T2I-Adapter's begin/end step range, then set its weight to 0 # so it has no effect. t2i_adapter_weight = 0.0 # Apply the t2i_adapter_weight, and accumulate. if accum_adapter_state is None: # Handle the first T2I-Adapter. accum_adapter_state = [val * t2i_adapter_weight for val in single_t2i_adapter_data.adapter_state] else: # Add to the previous adapter states. for idx, value in enumerate(single_t2i_adapter_data.adapter_state): accum_adapter_state[idx] += value * t2i_adapter_weight down_intrablock_additional_residuals = accum_adapter_state uc_noise_pred, c_noise_pred = self.invokeai_diffuser.do_unet_step( sample=latent_model_input, timestep=t, # TODO: debug how handled batched and non batched timesteps step_index=step_index, total_step_count=total_step_count, conditioning_data=conditioning_data, down_block_additional_residuals=down_block_additional_residuals, # for ControlNet mid_block_additional_residual=mid_block_additional_residual, # for ControlNet down_intrablock_additional_residuals=down_intrablock_additional_residuals, # for T2I-Adapter ) guidance_scale = conditioning_data.guidance_scale if isinstance(guidance_scale, list): guidance_scale = guidance_scale[step_index] noise_pred = self.invokeai_diffuser._combine(uc_noise_pred, c_noise_pred, guidance_scale) guidance_rescale_multiplier = conditioning_data.guidance_rescale_multiplier if guidance_rescale_multiplier > 0: noise_pred = self._rescale_cfg( noise_pred, c_noise_pred, guidance_rescale_multiplier, ) # compute the previous noisy sample x_t -> x_t-1 step_output = self.scheduler.step(noise_pred, timestep, latents, **conditioning_data.scheduler_args) # TODO: discuss injection point options. For now this is a patch to get progress images working with inpainting again. for guidance in additional_guidance: # apply the mask to any "denoised" or "pred_original_sample" fields if hasattr(step_output, "denoised"): step_output.pred_original_sample = guidance(step_output.denoised, self.scheduler.timesteps[-1]) elif hasattr(step_output, "pred_original_sample"): step_output.pred_original_sample = guidance( step_output.pred_original_sample, self.scheduler.timesteps[-1] ) else: step_output.pred_original_sample = guidance(latents, self.scheduler.timesteps[-1]) return step_output @staticmethod def _rescale_cfg(total_noise_pred, pos_noise_pred, multiplier=0.7): """Implementation of Algorithm 2 from https://arxiv.org/pdf/2305.08891.pdf.""" ro_pos = torch.std(pos_noise_pred, dim=(1, 2, 3), keepdim=True) ro_cfg = torch.std(total_noise_pred, dim=(1, 2, 3), keepdim=True) x_rescaled = total_noise_pred * (ro_pos / ro_cfg) x_final = multiplier * x_rescaled + (1.0 - multiplier) * total_noise_pred return x_final def _unet_forward( self, latents, t, text_embeddings, cross_attention_kwargs: Optional[dict[str, Any]] = None, **kwargs, ): """predict the noise residual""" if is_inpainting_model(self.unet) and latents.size(1) == 4: # Pad out normal non-inpainting inputs for an inpainting model. # FIXME: There are too many layers of functions and we have too many different ways of # overriding things! This should get handled in a way more consistent with the other # use of AddsMaskLatents. latents = AddsMaskLatents( self._unet_forward, mask=torch.ones_like(latents[:1, :1], device=latents.device, dtype=latents.dtype), initial_image_latents=torch.zeros_like(latents[:1], device=latents.device, dtype=latents.dtype), ).add_mask_channels(latents) # First three args should be positional, not keywords, so torch hooks can see them. return self.unet( latents, t, text_embeddings, cross_attention_kwargs=cross_attention_kwargs, **kwargs, ).sample