from __future__ import annotations import secrets import warnings from dataclasses import dataclass from typing import List, Optional, Union, Callable, Type, TypeVar, Generic, Any, ParamSpec import PIL.Image import einops import torch import torchvision.transforms as T from diffusers.models import attention from ...models.diffusion import cross_attention_control # monkeypatch diffusers CrossAttention 🙈 # this is to make prompt2prompt and (future) attention maps work attention.CrossAttention = cross_attention_control.InvokeAIDiffusersCrossAttention from diffusers.models import AutoencoderKL, UNet2DConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipeline from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img import StableDiffusionImg2ImgPipeline from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers.scheduling_utils import SchedulerMixin, SchedulerOutput from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils.outputs import BaseOutput from torchvision.transforms.functional import resize as tv_resize from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer from ldm.models.diffusion.shared_invokeai_diffusion import InvokeAIDiffuserComponent from ldm.modules.embedding_manager import EmbeddingManager from ldm.modules.encoders.modules import WeightedFrozenCLIPEmbedder @dataclass class PipelineIntermediateState: run_id: str step: int timestep: int latents: torch.Tensor predicted_original: Optional[torch.Tensor] = None # copied from configs/stable-diffusion/v1-inference.yaml _default_personalization_config_params = dict( placeholder_strings=["*"], initializer_wods=["sculpture"], per_image_tokens=False, num_vectors_per_token=1, progressive_words=False ) @dataclass class AddsMaskLatents: """Add the channels required for inpainting model input. The inpainting model takes the normal latent channels as input, _plus_ a one-channel mask and the latent encoding of the base image. This class assumes the same mask and base image should apply to all items in the batch. """ forward: Callable[[torch.Tensor, torch.Tensor, torch.Tensor], torch.Tensor] mask: torch.FloatTensor initial_image_latents: torch.FloatTensor def __call__(self, latents: torch.FloatTensor, t: torch.Tensor, text_embeddings: torch.FloatTensor) -> torch.Tensor: model_input = self.add_mask_channels(latents) return self.forward(model_input, t, text_embeddings) def add_mask_channels(self, latents): batch_size = latents.size(0) # duplicate mask and latents for each batch mask = einops.repeat(self.mask, 'b c h w -> (repeat b) c h w', repeat=batch_size) image_latents = einops.repeat(self.initial_image_latents, 'b c h w -> (repeat b) c h w', repeat=batch_size) # add mask and image as additional channels model_input, _ = einops.pack([latents, mask, image_latents], 'b * h w') return model_input def are_like_tensors(a: torch.Tensor, b: object) -> bool: return ( isinstance(b, torch.Tensor) and (a.size() == b.size()) ) @dataclass class AddsMaskGuidance: mask: torch.FloatTensor mask_latents: torch.FloatTensor _scheduler: SchedulerMixin _noise_func: Callable _debug: Optional[Callable] = None def __call__(self, step_output: BaseOutput | SchedulerOutput, t: torch.Tensor, conditioning) -> BaseOutput: output_class = step_output.__class__ # We'll create a new one with masked data. # The problem with taking SchedulerOutput instead of the model output is that we're less certain what's in it. # It's reasonable to assume the first thing is prev_sample, but then does it have other things # like pred_original_sample? Should we apply the mask to them too? # But what if there's just some other random field? prev_sample = step_output[0] # Mask anything that has the same shape as prev_sample, return others as-is. return output_class( {k: (self.apply_mask(v, self._t_for_field(k, t)) if are_like_tensors(prev_sample, v) else v) for k, v in step_output.items()} ) def _t_for_field(self, field_name:str, t): if field_name == "pred_original_sample": return torch.zeros_like(t, dtype=t.dtype) # it represents t=0 return t def apply_mask(self, latents: torch.Tensor, t) -> torch.Tensor: batch_size = latents.size(0) mask = einops.repeat(self.mask, 'b c h w -> (repeat b) c h w', repeat=batch_size) noise = self._noise_func(self.mask_latents) mask_latents = self._scheduler.add_noise(self.mask_latents, noise, t) # TODO: Do we need to also apply scheduler.scale_model_input? Or is add_noise appropriately scaled already? mask_latents = einops.repeat(mask_latents, 'b c h w -> (repeat b) c h w', repeat=batch_size) masked_input = torch.lerp(mask_latents.to(dtype=latents.dtype), latents, mask.to(dtype=latents.dtype)) if self._debug: self._debug(masked_input, f"t={t} lerped") return masked_input def trim_to_multiple_of(*args, multiple_of=8): return tuple((x - x % multiple_of) for x in args) def image_resized_to_grid_as_tensor(image: PIL.Image.Image, normalize: bool=True, multiple_of=8) -> torch.FloatTensor: """ :param image: input image :param normalize: scale the range to [-1, 1] instead of [0, 1] :param multiple_of: resize the input so both dimensions are a multiple of this """ w, h = trim_to_multiple_of(*image.size) transformation = T.Compose([ T.Resize((h, w), T.InterpolationMode.LANCZOS), T.ToTensor(), ]) tensor = transformation(image) if normalize: tensor = tensor * 2.0 - 1.0 return tensor def is_inpainting_model(unet: UNet2DConditionModel): return unet.conv_in.in_channels == 9 CallbackType = TypeVar('CallbackType') ReturnType = TypeVar('ReturnType') ParamType = ParamSpec('ParamType') @dataclass(frozen=True) class GeneratorToCallbackinator(Generic[ParamType, ReturnType, CallbackType]): """Convert a generator to a function with a callback and a return value.""" generator_method: Callable[ParamType, ReturnType] callback_arg_type: Type[CallbackType] def __call__(self, *args: ParamType.args, callback:Callable[[CallbackType], Any]=None, **kwargs: ParamType.kwargs) -> ReturnType: result = None for result in self.generator_method(*args, **kwargs): if callback is not None and isinstance(result, self.callback_arg_type): callback(result) if result is None: raise AssertionError("why was that an empty generator?") return result class StableDiffusionGeneratorPipeline(StableDiffusionPipeline): r""" Pipeline for text-to-image generation using Stable Diffusion. This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) Implementation note: This class started as a refactored copy of diffusers.StableDiffusionPipeline. Hopefully future versions of diffusers provide access to more of these functions so that we don't need to duplicate them here: https://github.com/huggingface/diffusers/issues/551#issuecomment-1281508384 Args: vae ([`AutoencoderKL`]): Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. text_encoder ([`CLIPTextModel`]): Frozen text-encoder. Stable Diffusion uses the text portion of [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. tokenizer (`CLIPTokenizer`): Tokenizer of class [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents. scheduler ([`SchedulerMixin`]): A scheduler to be used in combination with `unet` to denoise the encoded image latens. Can be one of [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. safety_checker ([`StableDiffusionSafetyChecker`]): Classification module that estimates whether generated images could be considered offsensive or harmful. Please, refer to the [model card](https://huggingface.co/CompVis/stable-diffusion-v1-4) for details. feature_extractor ([`CLIPFeatureExtractor`]): Model that extracts features from generated images to be used as inputs for the `safety_checker`. """ ID_LENGTH = 8 def __init__( self, vae: AutoencoderKL, text_encoder: CLIPTextModel, tokenizer: CLIPTokenizer, unet: UNet2DConditionModel, scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler], safety_checker: Optional[StableDiffusionSafetyChecker], feature_extractor: Optional[CLIPFeatureExtractor], requires_safety_checker: bool = False ): super().__init__(vae, text_encoder, tokenizer, unet, scheduler, safety_checker, feature_extractor, requires_safety_checker) self.register_modules( vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor, ) # InvokeAI's interface for text embeddings and whatnot self.clip_embedder = WeightedFrozenCLIPEmbedder( tokenizer=self.tokenizer, transformer=self.text_encoder ) self.invokeai_diffuser = InvokeAIDiffuserComponent(self.unet, self._unet_forward) self.embedding_manager = EmbeddingManager(self.clip_embedder, **_default_personalization_config_params) def image_from_embeddings(self, latents: torch.Tensor, num_inference_steps: int, text_embeddings: torch.Tensor, unconditioned_embeddings: torch.Tensor, guidance_scale: float, *, callback: Callable[[PipelineIntermediateState], None]=None, extra_conditioning_info: InvokeAIDiffuserComponent.ExtraConditioningInfo=None, run_id=None, **extra_step_kwargs) -> StableDiffusionPipelineOutput: r""" Function invoked when calling the pipeline for generation. :param latents: Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. :param num_inference_steps: The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. :param text_embeddings: :param guidance_scale: Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). `guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, usually at the expense of lower image quality. :param callback: :param extra_conditioning_info: :param run_id: :param extra_step_kwargs: """ result_latents = self.latents_from_embeddings( latents, num_inference_steps, text_embeddings, unconditioned_embeddings, guidance_scale, extra_conditioning_info=extra_conditioning_info, run_id=run_id, callback=callback, **extra_step_kwargs ) # https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699 torch.cuda.empty_cache() with torch.inference_mode(): image = self.decode_latents(result_latents) output = StableDiffusionPipelineOutput(images=image, nsfw_content_detected=[]) return self.check_for_safety(output, dtype=text_embeddings.dtype) def latents_from_embeddings( self, latents: torch.Tensor, num_inference_steps: int, text_embeddings: torch.Tensor, unconditioned_embeddings: torch.Tensor, guidance_scale: float, *, timesteps = None, extra_conditioning_info: InvokeAIDiffuserComponent.ExtraConditioningInfo = None, additional_guidance: List[Callable] = None, run_id=None, callback: Callable[[PipelineIntermediateState], None]=None, **extra_step_kwargs ) -> torch.Tensor: if timesteps is None: self.scheduler.set_timesteps(num_inference_steps, device=self.unet.device) timesteps = self.scheduler.timesteps infer_latents_from_embeddings = GeneratorToCallbackinator(self.generate_latents_from_embeddings, PipelineIntermediateState) return infer_latents_from_embeddings( latents, timesteps, text_embeddings, unconditioned_embeddings, guidance_scale, extra_conditioning_info=extra_conditioning_info, additional_guidance=additional_guidance, run_id=run_id, callback=callback, **extra_step_kwargs).latents def generate_latents_from_embeddings(self, latents: torch.Tensor, timesteps, text_embeddings: torch.Tensor, unconditioned_embeddings: torch.Tensor, guidance_scale: float, *, run_id: str = None, extra_conditioning_info: InvokeAIDiffuserComponent.ExtraConditioningInfo = None, additional_guidance: List[Callable] = None, **extra_step_kwargs): if run_id is None: run_id = secrets.token_urlsafe(self.ID_LENGTH) if additional_guidance is None: additional_guidance = [] if extra_conditioning_info is not None and extra_conditioning_info.wants_cross_attention_control: self.invokeai_diffuser.setup_cross_attention_control(extra_conditioning_info, step_count=len(self.scheduler.timesteps)) else: self.invokeai_diffuser.remove_cross_attention_control() # scale the initial noise by the standard deviation required by the scheduler latents *= self.scheduler.init_noise_sigma yield PipelineIntermediateState(run_id=run_id, step=-1, timestep=self.scheduler.num_train_timesteps, latents=latents) batch_size = latents.shape[0] batched_t = torch.full((batch_size,), timesteps[0], dtype=timesteps.dtype, device=self.unet.device) for i, t in enumerate(self.progress_bar(timesteps)): batched_t.fill_(t) step_output = self.step(batched_t, latents, guidance_scale, text_embeddings, unconditioned_embeddings, i, additional_guidance=additional_guidance, **extra_step_kwargs) latents = step_output.prev_sample predicted_original = getattr(step_output, 'pred_original_sample', None) yield PipelineIntermediateState(run_id=run_id, step=i, timestep=int(t), latents=latents, predicted_original=predicted_original) return latents @torch.inference_mode() def step(self, t: torch.Tensor, latents: torch.Tensor, guidance_scale: float, text_embeddings: torch.Tensor, unconditioned_embeddings: torch.Tensor, step_index:int | None = None, additional_guidance: List[Callable] = None, **extra_step_kwargs): # invokeai_diffuser has batched timesteps, but diffusers schedulers expect a single value timestep = t[0] if additional_guidance is None: additional_guidance = [] # TODO: should this scaling happen here or inside self._unet_forward? # i.e. before or after passing it to InvokeAIDiffuserComponent latent_model_input = self.scheduler.scale_model_input(latents, timestep) # predict the noise residual noise_pred = self.invokeai_diffuser.do_diffusion_step( latent_model_input, t, unconditioned_embeddings, text_embeddings, guidance_scale, step_index=step_index) # compute the previous noisy sample x_t -> x_t-1 step_output = self.scheduler.step(noise_pred, timestep, latents, **extra_step_kwargs) # TODO: this additional_guidance extension point feels redundant with InvokeAIDiffusionComponent. # But the way things are now, scheduler runs _after_ that, so there was # no way to use it to apply an operation that happens after the last scheduler.step. for guidance in additional_guidance: step_output = guidance(step_output, timestep, (unconditioned_embeddings, text_embeddings)) return step_output def _unet_forward(self, latents, t, text_embeddings): # predict the noise residual return self.unet(latents, t, encoder_hidden_states=text_embeddings).sample def img2img_from_embeddings(self, init_image: Union[torch.FloatTensor, PIL.Image.Image], strength: float, num_inference_steps: int, text_embeddings: torch.Tensor, unconditioned_embeddings: torch.Tensor, guidance_scale: float, *, callback: Callable[[PipelineIntermediateState], None] = None, extra_conditioning_info: InvokeAIDiffuserComponent.ExtraConditioningInfo = None, run_id=None, noise_func=None, **extra_step_kwargs) -> StableDiffusionPipelineOutput: if isinstance(init_image, PIL.Image.Image): init_image = image_resized_to_grid_as_tensor(init_image.convert('RGB')) if init_image.dim() == 3: init_image = einops.rearrange(init_image, 'c h w -> 1 c h w') # 6. Prepare latent variables device = self.unet.device latents_dtype = self.unet.dtype initial_latents = self.non_noised_latents_from_image(init_image, device=device, dtype=latents_dtype) return self.img2img_from_latents_and_embeddings(initial_latents, num_inference_steps, text_embeddings, unconditioned_embeddings, guidance_scale, strength, extra_conditioning_info, noise_func, run_id, callback, **extra_step_kwargs) def img2img_from_latents_and_embeddings(self, initial_latents, num_inference_steps, text_embeddings, unconditioned_embeddings, guidance_scale, strength, extra_conditioning_info, noise_func, run_id=None, callback=None, **extra_step_kwargs): device = self.unet.device batch_size = initial_latents.size(0) img2img_pipeline = StableDiffusionImg2ImgPipeline(**self.components) img2img_pipeline.scheduler.set_timesteps(num_inference_steps, device=device) timesteps = img2img_pipeline.get_timesteps(num_inference_steps, strength, device=device) latent_timestep = timesteps[:1].repeat(batch_size) latents = self.noise_latents_for_time(initial_latents, latent_timestep, noise_func=noise_func) result_latents = self.latents_from_embeddings( latents, num_inference_steps, text_embeddings, unconditioned_embeddings, guidance_scale, extra_conditioning_info=extra_conditioning_info, timesteps=timesteps, callback=callback, run_id=run_id, **extra_step_kwargs) # https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699 torch.cuda.empty_cache() with torch.inference_mode(): image = self.decode_latents(result_latents) output = StableDiffusionPipelineOutput(images=image, nsfw_content_detected=[]) return self.check_for_safety(output, dtype=text_embeddings.dtype) def inpaint_from_embeddings( self, init_image: torch.FloatTensor, mask: torch.FloatTensor, strength: float, num_inference_steps: int, text_embeddings: torch.Tensor, unconditioned_embeddings: torch.Tensor, guidance_scale: float, *, callback: Callable[[PipelineIntermediateState], None] = None, extra_conditioning_info: InvokeAIDiffuserComponent.ExtraConditioningInfo = None, run_id=None, noise_func=None, **extra_step_kwargs) -> StableDiffusionPipelineOutput: device = self.unet.device latents_dtype = self.unet.dtype batch_size = 1 num_images_per_prompt = 1 if isinstance(init_image, PIL.Image.Image): init_image = image_resized_to_grid_as_tensor(init_image.convert('RGB')) init_image = init_image.to(device=device, dtype=latents_dtype) if init_image.dim() == 3: init_image = init_image.unsqueeze(0) img2img_pipeline = StableDiffusionImg2ImgPipeline(**self.components) img2img_pipeline.scheduler.set_timesteps(num_inference_steps, device=device) timesteps = img2img_pipeline.get_timesteps(num_inference_steps, strength, device=device) assert img2img_pipeline.scheduler is self.scheduler # 6. Prepare latent variables latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt) # can't quite use upstream StableDiffusionImg2ImgPipeline.prepare_latents # because we have our own noise function init_image_latents = self.non_noised_latents_from_image(init_image, device=device, dtype=latents_dtype) latents = self.noise_latents_for_time(init_image_latents, latent_timestep, noise_func=noise_func) if mask.dim() == 3: mask = mask.unsqueeze(0) mask = tv_resize(mask, latents.shape[-2:], T.InterpolationMode.BILINEAR) \ .to(device=device, dtype=latents_dtype) guidance: List[Callable] = [] if is_inpainting_model(self.unet): # TODO: we should probably pass this in so we don't have to try/finally around setting it. self.invokeai_diffuser.model_forward_callback = \ AddsMaskLatents(self._unet_forward, mask, init_image_latents) else: guidance.append(AddsMaskGuidance(mask, init_image_latents, self.scheduler, noise_func)) try: result_latents = self.latents_from_embeddings( latents, num_inference_steps, text_embeddings, unconditioned_embeddings, guidance_scale, extra_conditioning_info=extra_conditioning_info, timesteps=timesteps, run_id=run_id, additional_guidance=guidance, callback=callback, **extra_step_kwargs) finally: self.invokeai_diffuser.model_forward_callback = self._unet_forward # https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699 torch.cuda.empty_cache() with torch.inference_mode(): image = self.decode_latents(result_latents) output = StableDiffusionPipelineOutput(images=image, nsfw_content_detected=[]) return self.check_for_safety(output, dtype=text_embeddings.dtype) def non_noised_latents_from_image(self, init_image, *, device, dtype): init_image = init_image.to(device=device, dtype=dtype) with torch.inference_mode(): init_latent_dist = self.vae.encode(init_image).latent_dist init_latents = init_latent_dist.sample().to(dtype=dtype) # FIXME: uses torch.randn. make reproducible! init_latents = 0.18215 * init_latents return init_latents def noise_latents_for_time(self, latents, timestep, *, noise_func): noise = noise_func(latents) noised_latents = self.scheduler.add_noise(latents, noise, timestep) return noised_latents def check_for_safety(self, output, dtype): with torch.inference_mode(): screened_images, has_nsfw_concept = self.run_safety_checker( output.images, device=self._execution_device, dtype=dtype) return StableDiffusionPipelineOutput(screened_images, has_nsfw_concept) @torch.inference_mode() def get_learned_conditioning(self, c: List[List[str]], *, return_tokens=True, fragment_weights=None): """ Compatibility function for ldm.models.diffusion.ddpm.LatentDiffusion. """ return self.clip_embedder.encode(c, return_tokens=return_tokens, fragment_weights=fragment_weights) @property def cond_stage_model(self): warnings.warn("legacy compatibility layer", DeprecationWarning) return self.clip_embedder @torch.inference_mode() def _tokenize(self, prompt: Union[str, List[str]]): return self.tokenizer( prompt, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="pt", ) @property def channels(self) -> int: """Compatible with DiffusionWrapper""" return self.unet.in_channels def debug_latents(self, latents, msg): with torch.inference_mode(): from ldm.util import debug_image decoded = self.numpy_to_pil(self.decode_latents(latents)) for i, img in enumerate(decoded): debug_image(img, f"latents {msg} {i+1}/{len(decoded)}", debug_status=True)