from __future__ import annotations import dataclasses import inspect import math import secrets from collections.abc import Sequence from dataclasses import dataclass, field from typing import Any, Callable, Generic, List, Optional, Type, TypeVar, Union from pydantic import BaseModel, Field import einops import PIL.Image import numpy as np from accelerate.utils import set_seed import psutil import torch import torchvision.transforms as T from compel import EmbeddingsProvider from diffusers.models import AutoencoderKL, UNet2DConditionModel from diffusers.models.controlnet import ControlNetModel, ControlNetOutput from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import ( StableDiffusionPipeline, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img import ( StableDiffusionImg2ImgPipeline, ) from diffusers.pipelines.stable_diffusion.safety_checker import ( StableDiffusionSafetyChecker, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.schedulers.scheduling_utils import SchedulerMixin, SchedulerOutput from diffusers.utils import PIL_INTERPOLATION from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.outputs import BaseOutput from torchvision.transforms.functional import resize as tv_resize from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer from typing_extensions import ParamSpec from invokeai.app.services.config import InvokeAIAppConfig from ..util import CPU_DEVICE, normalize_device from .diffusion import ( AttentionMapSaver, InvokeAIDiffuserComponent, PostprocessingSettings, ) from .offloading import FullyLoadedModelGroup, LazilyLoadedModelGroup, ModelGroup from .textual_inversion_manager import TextualInversionManager @dataclass class PipelineIntermediateState: run_id: str step: int timestep: int latents: torch.Tensor predicted_original: Optional[torch.Tensor] = None attention_map_saver: Optional[AttentionMapSaver] = None @dataclass class AddsMaskLatents: """Add the channels required for inpainting model input. The inpainting model takes the normal latent channels as input, _plus_ a one-channel mask and the latent encoding of the base image. This class assumes the same mask and base image should apply to all items in the batch. """ forward: Callable[[torch.Tensor, torch.Tensor, torch.Tensor], torch.Tensor] mask: torch.Tensor initial_image_latents: torch.Tensor def __call__( self, latents: torch.Tensor, t: torch.Tensor, text_embeddings: torch.Tensor, **kwargs, ) -> torch.Tensor: model_input = self.add_mask_channels(latents) return self.forward(model_input, t, text_embeddings, **kwargs) def add_mask_channels(self, latents): batch_size = latents.size(0) # duplicate mask and latents for each batch mask = einops.repeat( self.mask, "b c h w -> (repeat b) c h w", repeat=batch_size ) image_latents = einops.repeat( self.initial_image_latents, "b c h w -> (repeat b) c h w", repeat=batch_size ) # add mask and image as additional channels model_input, _ = einops.pack([latents, mask, image_latents], "b * h w") return model_input def are_like_tensors(a: torch.Tensor, b: object) -> bool: return isinstance(b, torch.Tensor) and (a.size() == b.size()) @dataclass class AddsMaskGuidance: mask: torch.FloatTensor mask_latents: torch.FloatTensor scheduler: SchedulerMixin noise: torch.Tensor _debug: Optional[Callable] = None def __call__( self, step_output: BaseOutput | SchedulerOutput, t: torch.Tensor, conditioning ) -> BaseOutput: output_class = step_output.__class__ # We'll create a new one with masked data. # The problem with taking SchedulerOutput instead of the model output is that we're less certain what's in it. # It's reasonable to assume the first thing is prev_sample, but then does it have other things # like pred_original_sample? Should we apply the mask to them too? # But what if there's just some other random field? prev_sample = step_output[0] # Mask anything that has the same shape as prev_sample, return others as-is. return output_class( { k: ( self.apply_mask(v, self._t_for_field(k, t)) if are_like_tensors(prev_sample, v) else v ) for k, v in step_output.items() } ) def _t_for_field(self, field_name: str, t): if field_name == "pred_original_sample": return torch.zeros_like(t, dtype=t.dtype) # it represents t=0 return t def apply_mask(self, latents: torch.Tensor, t) -> torch.Tensor: batch_size = latents.size(0) mask = einops.repeat( self.mask, "b c h w -> (repeat b) c h w", repeat=batch_size ) if t.dim() == 0: # some schedulers expect t to be one-dimensional. # TODO: file diffusers bug about inconsistency? t = einops.repeat(t, "-> batch", batch=batch_size) # Noise shouldn't be re-randomized between steps here. The multistep schedulers # get very confused about what is happening from step to step when we do that. mask_latents = self.scheduler.add_noise(self.mask_latents, self.noise, t) # TODO: Do we need to also apply scheduler.scale_model_input? Or is add_noise appropriately scaled already? # mask_latents = self.scheduler.scale_model_input(mask_latents, t) mask_latents = einops.repeat( mask_latents, "b c h w -> (repeat b) c h w", repeat=batch_size ) masked_input = torch.lerp( mask_latents.to(dtype=latents.dtype), latents, mask.to(dtype=latents.dtype) ) if self._debug: self._debug(masked_input, f"t={t} lerped") return masked_input def trim_to_multiple_of(*args, multiple_of=8): return tuple((x - x % multiple_of) for x in args) def image_resized_to_grid_as_tensor( image: PIL.Image.Image, normalize: bool = True, multiple_of=8 ) -> torch.FloatTensor: """ :param image: input image :param normalize: scale the range to [-1, 1] instead of [0, 1] :param multiple_of: resize the input so both dimensions are a multiple of this """ w, h = trim_to_multiple_of(*image.size, multiple_of=multiple_of) transformation = T.Compose( [ T.Resize((h, w), T.InterpolationMode.LANCZOS), T.ToTensor(), ] ) tensor = transformation(image) if normalize: tensor = tensor * 2.0 - 1.0 return tensor def is_inpainting_model(unet: UNet2DConditionModel): return unet.conv_in.in_channels == 9 CallbackType = TypeVar("CallbackType") ReturnType = TypeVar("ReturnType") ParamType = ParamSpec("ParamType") @dataclass(frozen=True) class GeneratorToCallbackinator(Generic[ParamType, ReturnType, CallbackType]): """Convert a generator to a function with a callback and a return value.""" generator_method: Callable[ParamType, ReturnType] callback_arg_type: Type[CallbackType] def __call__( self, *args: ParamType.args, callback: Callable[[CallbackType], Any] = None, **kwargs: ParamType.kwargs, ) -> ReturnType: result = None for result in self.generator_method(*args, **kwargs): if callback is not None and isinstance(result, self.callback_arg_type): callback(result) if result is None: raise AssertionError("why was that an empty generator?") return result @dataclass class ControlNetData: model: ControlNetModel = Field(default=None) image_tensor: torch.Tensor = Field(default=None) weight: Union[float, List[float]] = Field(default=1.0) begin_step_percent: float = Field(default=0.0) end_step_percent: float = Field(default=1.0) # FIXME: replace with guess_mode with enum control_mode: BALANCED, MORE_PROMPT, MORE_CONTROL guess_mode: bool = Field(default=False) # guess_mode can work with or without prompt cfg_injection: bool = Field(default=False) soft_injection: bool = Field(default=False) @dataclass(frozen=True) class ConditioningData: unconditioned_embeddings: torch.Tensor text_embeddings: torch.Tensor guidance_scale: Union[float, List[float]] """ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). `guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, usually at the expense of lower image quality. """ extra: Optional[InvokeAIDiffuserComponent.ExtraConditioningInfo] = None scheduler_args: dict[str, Any] = field(default_factory=dict) """ Additional arguments to pass to invokeai_diffuser.do_latent_postprocessing(). """ postprocessing_settings: Optional[PostprocessingSettings] = None @property def dtype(self): return self.text_embeddings.dtype def add_scheduler_args_if_applicable(self, scheduler, **kwargs): scheduler_args = dict(self.scheduler_args) step_method = inspect.signature(scheduler.step) for name, value in kwargs.items(): try: step_method.bind_partial(**{name: value}) except TypeError: # FIXME: don't silently discard arguments pass # debug("%s does not accept argument named %r", scheduler, name) else: scheduler_args[name] = value return dataclasses.replace(self, scheduler_args=scheduler_args) @dataclass class InvokeAIStableDiffusionPipelineOutput(StableDiffusionPipelineOutput): r""" Output class for InvokeAI's Stable Diffusion pipeline. Args: attention_map_saver (`AttentionMapSaver`): Object containing attention maps that can be displayed to the user after generation completes. Optional. """ attention_map_saver: Optional[AttentionMapSaver] class StableDiffusionGeneratorPipeline(StableDiffusionPipeline): r""" Pipeline for text-to-image generation using Stable Diffusion. This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) Implementation note: This class started as a refactored copy of diffusers.StableDiffusionPipeline. Hopefully future versions of diffusers provide access to more of these functions so that we don't need to duplicate them here: https://github.com/huggingface/diffusers/issues/551#issuecomment-1281508384 Args: vae ([`AutoencoderKL`]): Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. text_encoder ([`CLIPTextModel`]): Frozen text-encoder. Stable Diffusion uses the text portion of [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. tokenizer (`CLIPTokenizer`): Tokenizer of class [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents. scheduler ([`SchedulerMixin`]): A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. safety_checker ([`StableDiffusionSafetyChecker`]): Classification module that estimates whether generated images could be considered offensive or harmful. Please, refer to the [model card](https://huggingface.co/CompVis/stable-diffusion-v1-4) for details. feature_extractor ([`CLIPFeatureExtractor`]): Model that extracts features from generated images to be used as inputs for the `safety_checker`. """ _model_group: ModelGroup ID_LENGTH = 8 def __init__( self, vae: AutoencoderKL, text_encoder: CLIPTextModel, tokenizer: CLIPTokenizer, unet: UNet2DConditionModel, scheduler: KarrasDiffusionSchedulers, safety_checker: Optional[StableDiffusionSafetyChecker], feature_extractor: Optional[CLIPFeatureExtractor], requires_safety_checker: bool = False, precision: str = "float32", control_model: ControlNetModel = None, ): super().__init__( vae, text_encoder, tokenizer, unet, scheduler, safety_checker, feature_extractor, requires_safety_checker, ) self.register_modules( vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor, # FIXME: can't currently register control module # control_model=control_model, ) self.invokeai_diffuser = InvokeAIDiffuserComponent( self.unet, self._unet_forward, is_running_diffusers=True ) use_full_precision = precision == "float32" or precision == "autocast" self.textual_inversion_manager = TextualInversionManager( tokenizer=self.tokenizer, text_encoder=self.text_encoder, full_precision=use_full_precision, ) # InvokeAI's interface for text embeddings and whatnot self.embeddings_provider = EmbeddingsProvider( tokenizer=self.tokenizer, text_encoder=self.text_encoder, textual_inversion_manager=self.textual_inversion_manager, ) self._model_group = FullyLoadedModelGroup(self.unet.device) self._model_group.install(*self._submodels) self.control_model = control_model def _adjust_memory_efficient_attention(self, latents: torch.Tensor): """ if xformers is available, use it, otherwise use sliced attention. """ config = InvokeAIAppConfig.get_config() if ( torch.cuda.is_available() and is_xformers_available() and not config.disable_xformers ): self.enable_xformers_memory_efficient_attention() else: if torch.backends.mps.is_available(): # until pytorch #91617 is fixed, slicing is borked on MPS # https://github.com/pytorch/pytorch/issues/91617 # fix is in https://github.com/kulinseth/pytorch/pull/222 but no idea when it will get merged to pytorch mainline. pass else: if self.device.type == "cpu" or self.device.type == "mps": mem_free = psutil.virtual_memory().free elif self.device.type == "cuda": mem_free, _ = torch.cuda.mem_get_info(normalize_device(self.device)) else: raise ValueError(f"unrecognized device {self.device}") # input tensor of [1, 4, h/8, w/8] # output tensor of [16, (h/8 * w/8), (h/8 * w/8)] bytes_per_element_needed_for_baddbmm_duplication = ( latents.element_size() + 4 ) max_size_required_for_baddbmm = ( 16 * latents.size(dim=2) * latents.size(dim=3) * latents.size(dim=2) * latents.size(dim=3) * bytes_per_element_needed_for_baddbmm_duplication ) if max_size_required_for_baddbmm > ( mem_free * 3.0 / 4.0 ): # 3.3 / 4.0 is from old Invoke code self.enable_attention_slicing(slice_size="max") else: self.disable_attention_slicing() def enable_offload_submodels(self, device: torch.device): """ Offload each submodel when it's not in use. Useful for low-vRAM situations where the size of the model in memory is a big chunk of the total available resource, and you want to free up as much for inference as possible. This requires more moving parts and may add some delay as the U-Net is swapped out for the VAE and vice-versa. """ models = self._submodels if self._model_group is not None: self._model_group.uninstall(*models) group = LazilyLoadedModelGroup(device) group.install(*models) self._model_group = group def disable_offload_submodels(self): """ Leave all submodels loaded. Appropriate for cases where the size of the model in memory is small compared to the memory required for inference. Avoids the delay and complexity of shuffling the submodels to and from the GPU. """ models = self._submodels if self._model_group is not None: self._model_group.uninstall(*models) group = FullyLoadedModelGroup(self._model_group.execution_device) group.install(*models) self._model_group = group def offload_all(self): """Offload all this pipeline's models to CPU.""" self._model_group.offload_current() def ready(self): """ Ready this pipeline's models. i.e. preload them to the GPU if appropriate. """ self._model_group.ready() def to(self, torch_device: Optional[Union[str, torch.device]] = None, silence_dtype_warnings=False): # overridden method; types match the superclass. if torch_device is None: return self self._model_group.set_device(torch.device(torch_device)) self._model_group.ready() @property def device(self) -> torch.device: return self._model_group.execution_device @property def _submodels(self) -> Sequence[torch.nn.Module]: module_names, _, _ = self.extract_init_dict(dict(self.config)) submodels = [] for name in module_names.keys(): if hasattr(self, name): value = getattr(self, name) else: value = getattr(self.config, name) if isinstance(value, torch.nn.Module): submodels.append(value) return submodels def image_from_embeddings( self, latents: torch.Tensor, num_inference_steps: int, conditioning_data: ConditioningData, *, noise: torch.Tensor, callback: Callable[[PipelineIntermediateState], None] = None, run_id=None, **kwargs, ) -> InvokeAIStableDiffusionPipelineOutput: r""" Function invoked when calling the pipeline for generation. :param conditioning_data: :param latents: Pre-generated un-noised latents, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. :param num_inference_steps: The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. :param noise: Noise to add to the latents, sampled from a Gaussian distribution. :param callback: :param run_id: """ result_latents, result_attention_map_saver = self.latents_from_embeddings( latents, num_inference_steps, conditioning_data, noise=noise, run_id=run_id, callback=callback, **kwargs, ) # https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699 torch.cuda.empty_cache() with torch.inference_mode(): image = self.decode_latents(result_latents) output = InvokeAIStableDiffusionPipelineOutput( images=image, nsfw_content_detected=[], attention_map_saver=result_attention_map_saver, ) return self.check_for_safety(output, dtype=conditioning_data.dtype) def latents_from_embeddings( self, latents: torch.Tensor, num_inference_steps: int, conditioning_data: ConditioningData, *, noise: torch.Tensor, timesteps=None, additional_guidance: List[Callable] = None, run_id=None, callback: Callable[[PipelineIntermediateState], None] = None, control_data: List[ControlNetData] = None, **kwargs, ) -> tuple[torch.Tensor, Optional[AttentionMapSaver]]: if self.scheduler.config.get("cpu_only", False): scheduler_device = torch.device('cpu') else: scheduler_device = self._model_group.device_for(self.unet) if timesteps is None: self.scheduler.set_timesteps(num_inference_steps, device=scheduler_device) timesteps = self.scheduler.timesteps infer_latents_from_embeddings = GeneratorToCallbackinator( self.generate_latents_from_embeddings, PipelineIntermediateState ) result: PipelineIntermediateState = infer_latents_from_embeddings( latents, timesteps, conditioning_data, noise=noise, additional_guidance=additional_guidance, run_id=run_id, callback=callback, control_data=control_data, **kwargs, ) return result.latents, result.attention_map_saver def generate_latents_from_embeddings( self, latents: torch.Tensor, timesteps, conditioning_data: ConditioningData, *, noise: torch.Tensor, run_id: str = None, additional_guidance: List[Callable] = None, control_data: List[ControlNetData] = None, **kwargs, ): self._adjust_memory_efficient_attention(latents) if run_id is None: run_id = secrets.token_urlsafe(self.ID_LENGTH) if additional_guidance is None: additional_guidance = [] extra_conditioning_info = conditioning_data.extra with self.invokeai_diffuser.custom_attention_context( self.invokeai_diffuser.model, extra_conditioning_info=extra_conditioning_info, step_count=len(self.scheduler.timesteps), ): yield PipelineIntermediateState( run_id=run_id, step=-1, timestep=self.scheduler.config.num_train_timesteps, latents=latents, ) batch_size = latents.shape[0] batched_t = torch.full( (batch_size,), timesteps[0], dtype=timesteps.dtype, device=self._model_group.device_for(self.unet), ) latents = self.scheduler.add_noise(latents, noise, batched_t) attention_map_saver: Optional[AttentionMapSaver] = None # print("timesteps:", timesteps) for i, t in enumerate(self.progress_bar(timesteps)): batched_t.fill_(t) step_output = self.step( batched_t, latents, conditioning_data, step_index=i, total_step_count=len(timesteps), additional_guidance=additional_guidance, control_data=control_data, **kwargs, ) latents = step_output.prev_sample latents = self.invokeai_diffuser.do_latent_postprocessing( postprocessing_settings=conditioning_data.postprocessing_settings, latents=latents, sigma=batched_t, step_index=i, total_step_count=len(timesteps), ) predicted_original = getattr(step_output, "pred_original_sample", None) # TODO resuscitate attention map saving # if i == len(timesteps)-1 and extra_conditioning_info is not None: # eos_token_index = extra_conditioning_info.tokens_count_including_eos_bos - 1 # attention_map_token_ids = range(1, eos_token_index) # attention_map_saver = AttentionMapSaver(token_ids=attention_map_token_ids, latents_shape=latents.shape[-2:]) # self.invokeai_diffuser.setup_attention_map_saving(attention_map_saver) yield PipelineIntermediateState( run_id=run_id, step=i, timestep=int(t), latents=latents, predicted_original=predicted_original, attention_map_saver=attention_map_saver, ) return latents, attention_map_saver @torch.inference_mode() def step( self, t: torch.Tensor, latents: torch.Tensor, conditioning_data: ConditioningData, step_index: int, total_step_count: int, additional_guidance: List[Callable] = None, control_data: List[ControlNetData] = None, **kwargs, ): # invokeai_diffuser has batched timesteps, but diffusers schedulers expect a single value timestep = t[0] if additional_guidance is None: additional_guidance = [] # TODO: should this scaling happen here or inside self._unet_forward? # i.e. before or after passing it to InvokeAIDiffuserComponent unet_latent_input = self.scheduler.scale_model_input(latents, timestep) # # guess mode handling from diffusers # if guess_mode and do_classifier_free_guidance: # # Infer ControlNet only for the conditional batch. # control_model_input = latents # control_model_input = self.scheduler.scale_model_input(control_model_input, t) # controlnet_prompt_embeds = prompt_embeds.chunk(2)[1] # else: # control_model_input = unet_latent_input # controlnet_prompt_embeds = prompt_embeds # default is no controlnet, so set controlnet processing output to None down_block_res_samples, mid_block_res_sample = None, None if control_data is not None: # FIXME: make sure guidance_scale <= 1.0 is handled correctly if doing per-step guidance setting # UPDATE: I think this is fixed now with pydantic validator for cfg_scale? # So we should _never_ have guidance_scale <= 1.0 # if conditioning_data.guidance_scale > 1.0: # if conditioning_data.guidance_scale is not None: # if guess_mode is False: # # expand the latents input to control model if doing classifier free guidance # # (which I think for now is always true, there is conditional elsewhere that stops execution if # # classifier_free_guidance is <= 1.0 ?) # control_latent_input = torch.cat([unet_latent_input] * 2) # else: # control_latent_input = unet_latent_input # control_data should be type List[ControlNetData] # this loop covers both ControlNet (one ControlNetData in list) # and MultiControlNet (multiple ControlNetData in list) for i, control_datum in enumerate(control_data): # print("controlnet", i, "==>", type(control_datum)) first_control_step = math.floor(control_datum.begin_step_percent * total_step_count) last_control_step = math.ceil(control_datum.end_step_percent * total_step_count) # only apply controlnet if current step is within the controlnet's begin/end step range if step_index >= first_control_step and step_index <= last_control_step: # guess_mode = control_datum.guess_mode guess_mode = control_datum.cfg_injection if guess_mode: control_latent_input = unet_latent_input else: # expand the latents input to control model if doing classifier free guidance # (which I think for now is always true, there is conditional elsewhere that stops execution if # classifier_free_guidance is <= 1.0 ?) control_latent_input = torch.cat([unet_latent_input] * 2) print("running controlnet", i, "for step", step_index) print("guess mode: ", guess_mode) print("guess mode type: ", type(guess_mode)) if guess_mode: # only using prompt conditioning in unconditioned encoder_hidden_states = torch.cat([conditioning_data.unconditioned_embeddings]) else: encoder_hidden_states = torch.cat([conditioning_data.unconditioned_embeddings, conditioning_data.text_embeddings]) print("encoder_hidden_states.shape", encoder_hidden_states.shape) if isinstance(control_datum.weight, list): # if controlnet has multiple weights, use the weight for the current step controlnet_weight = control_datum.weight[step_index] else: # if controlnet has a single weight, use it for all steps controlnet_weight = control_datum.weight # guess mode handling from diffusers controlnet pipeline: # if guess_mode and do_classifier_free_guidance: # # Infer ControlNet only for the conditional batch. # latent_control_input = latents # latent_control_input = self.scheduler.scale_model_input(control_model_input, t) # controlnet_prompt_embeds = prompt_embeds.chunk(2)[1] # else: # control_model_input = unet_latent_input # controlnet_prompt_embeds = prompt_embeds # controlnet(s) inference down_samples, mid_sample = control_datum.model( sample=control_latent_input, timestep=timestep, # encoder_hidden_states=torch.cat([conditioning_data.unconditioned_embeddings, # conditioning_data.text_embeddings]), encoder_hidden_states=encoder_hidden_states, controlnet_cond=control_datum.image_tensor, conditioning_scale=controlnet_weight, # controlnet specific, NOT the guidance scale # cross_attention_kwargs, # guess_mode=guess_mode, guess_mode=control_datum.soft_injection, return_dict=False, ) print("finished ControlNetModel() call, step", step_index) if guess_mode: # Inferred ControlNet only for the conditional batch. # To apply the output of ControlNet to both the unconditional and conditional batches, # add 0 to the unconditional batch to keep it unchanged. down_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_samples] mid_sample = torch.cat([torch.zeros_like(mid_sample), mid_sample]) if down_block_res_samples is None and mid_block_res_sample is None: down_block_res_samples, mid_block_res_sample = down_samples, mid_sample else: # add controlnet outputs together if have multiple controlnets down_block_res_samples = [ samples_prev + samples_curr for samples_prev, samples_curr in zip(down_block_res_samples, down_samples) ] mid_block_res_sample += mid_sample # guess mode handling from diffusers controlnet pipeline: # if guess_mode and do_classifier_free_guidance: # # Inferred ControlNet only for the conditional batch. # # To apply the output of ControlNet to both the unconditional and conditional batches, # # add 0 to the unconditional batch to keep it unchanged. # down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples] # mid_block_res_sample = torch.cat([torch.zeros_like(mid_block_res_sample), mid_block_res_sample]) # predict the noise residual noise_pred = self.invokeai_diffuser.do_diffusion_step( x=unet_latent_input, sigma=t, unconditioning=conditioning_data.unconditioned_embeddings, conditioning=conditioning_data.text_embeddings, unconditional_guidance_scale=conditioning_data.guidance_scale, step_index=step_index, total_step_count=total_step_count, down_block_additional_residuals=down_block_res_samples, # from controlnet(s) mid_block_additional_residual=mid_block_res_sample, # from controlnet(s) ) # compute the previous noisy sample x_t -> x_t-1 step_output = self.scheduler.step( noise_pred, timestep, latents, **conditioning_data.scheduler_args ) # TODO: this additional_guidance extension point feels redundant with InvokeAIDiffusionComponent. # But the way things are now, scheduler runs _after_ that, so there was # no way to use it to apply an operation that happens after the last scheduler.step. for guidance in additional_guidance: step_output = guidance(step_output, timestep, conditioning_data) return step_output def _unet_forward( self, latents, t, text_embeddings, cross_attention_kwargs: Optional[dict[str, Any]] = None, **kwargs, ): """predict the noise residual""" if is_inpainting_model(self.unet) and latents.size(1) == 4: # Pad out normal non-inpainting inputs for an inpainting model. # FIXME: There are too many layers of functions and we have too many different ways of # overriding things! This should get handled in a way more consistent with the other # use of AddsMaskLatents. latents = AddsMaskLatents( self._unet_forward, mask=torch.ones_like( latents[:1, :1], device=latents.device, dtype=latents.dtype ), initial_image_latents=torch.zeros_like( latents[:1], device=latents.device, dtype=latents.dtype ), ).add_mask_channels(latents) # First three args should be positional, not keywords, so torch hooks can see them. return self.unet( latents, t, text_embeddings, cross_attention_kwargs=cross_attention_kwargs, **kwargs, ).sample def img2img_from_embeddings( self, init_image: Union[torch.FloatTensor, PIL.Image.Image], strength: float, num_inference_steps: int, conditioning_data: ConditioningData, *, callback: Callable[[PipelineIntermediateState], None] = None, run_id=None, noise_func=None, seed=None, ) -> InvokeAIStableDiffusionPipelineOutput: if isinstance(init_image, PIL.Image.Image): init_image = image_resized_to_grid_as_tensor(init_image.convert("RGB")) if init_image.dim() == 3: init_image = einops.rearrange(init_image, "c h w -> 1 c h w") # 6. Prepare latent variables initial_latents = self.non_noised_latents_from_image( init_image, device=self._model_group.device_for(self.unet), dtype=self.unet.dtype, ) if seed is not None: set_seed(seed) noise = noise_func(initial_latents) return self.img2img_from_latents_and_embeddings( initial_latents, num_inference_steps, conditioning_data, strength, noise, run_id, callback, ) def img2img_from_latents_and_embeddings( self, initial_latents, num_inference_steps, conditioning_data: ConditioningData, strength, noise: torch.Tensor, run_id=None, callback=None, ) -> InvokeAIStableDiffusionPipelineOutput: timesteps, _ = self.get_img2img_timesteps(num_inference_steps, strength) result_latents, result_attention_maps = self.latents_from_embeddings( latents=initial_latents if strength < 1.0 else torch.zeros_like( initial_latents, device=initial_latents.device, dtype=initial_latents.dtype ), num_inference_steps=num_inference_steps, conditioning_data=conditioning_data, timesteps=timesteps, noise=noise, run_id=run_id, callback=callback, ) # https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699 torch.cuda.empty_cache() with torch.inference_mode(): image = self.decode_latents(result_latents) output = InvokeAIStableDiffusionPipelineOutput( images=image, nsfw_content_detected=[], attention_map_saver=result_attention_maps, ) return self.check_for_safety(output, dtype=conditioning_data.dtype) def get_img2img_timesteps( self, num_inference_steps: int, strength: float, device=None ) -> (torch.Tensor, int): img2img_pipeline = StableDiffusionImg2ImgPipeline(**self.components) assert img2img_pipeline.scheduler is self.scheduler if self.scheduler.config.get("cpu_only", False): scheduler_device = torch.device('cpu') else: scheduler_device = self._model_group.device_for(self.unet) img2img_pipeline.scheduler.set_timesteps(num_inference_steps, device=scheduler_device) timesteps, adjusted_steps = img2img_pipeline.get_timesteps( num_inference_steps, strength, device=scheduler_device ) # Workaround for low strength resulting in zero timesteps. # TODO: submit upstream fix for zero-step img2img if timesteps.numel() == 0: timesteps = self.scheduler.timesteps[-1:] adjusted_steps = timesteps.numel() return timesteps, adjusted_steps def inpaint_from_embeddings( self, init_image: torch.FloatTensor, mask: torch.FloatTensor, strength: float, num_inference_steps: int, conditioning_data: ConditioningData, *, callback: Callable[[PipelineIntermediateState], None] = None, run_id=None, noise_func=None, seed=None, ) -> InvokeAIStableDiffusionPipelineOutput: device = self._model_group.device_for(self.unet) latents_dtype = self.unet.dtype if isinstance(init_image, PIL.Image.Image): init_image = image_resized_to_grid_as_tensor(init_image.convert("RGB")) init_image = init_image.to(device=device, dtype=latents_dtype) mask = mask.to(device=device, dtype=latents_dtype) if init_image.dim() == 3: init_image = init_image.unsqueeze(0) timesteps, _ = self.get_img2img_timesteps(num_inference_steps, strength) # 6. Prepare latent variables # can't quite use upstream StableDiffusionImg2ImgPipeline.prepare_latents # because we have our own noise function init_image_latents = self.non_noised_latents_from_image( init_image, device=device, dtype=latents_dtype ) if seed is not None: set_seed(seed) noise = noise_func(init_image_latents) if mask.dim() == 3: mask = mask.unsqueeze(0) latent_mask = tv_resize( mask, init_image_latents.shape[-2:], T.InterpolationMode.BILINEAR ).to(device=device, dtype=latents_dtype) guidance: List[Callable] = [] if is_inpainting_model(self.unet): # You'd think the inpainting model wouldn't be paying attention to the area it is going to repaint # (that's why there's a mask!) but it seems to really want that blanked out. masked_init_image = init_image * torch.where(mask < 0.5, 1, 0) masked_latents = self.non_noised_latents_from_image( masked_init_image, device=device, dtype=latents_dtype ) # TODO: we should probably pass this in so we don't have to try/finally around setting it. self.invokeai_diffuser.model_forward_callback = AddsMaskLatents( self._unet_forward, latent_mask, masked_latents ) else: guidance.append( AddsMaskGuidance(latent_mask, init_image_latents, self.scheduler, noise) ) try: result_latents, result_attention_maps = self.latents_from_embeddings( latents=init_image_latents if strength < 1.0 else torch.zeros_like( init_image_latents, device=init_image_latents.device, dtype=init_image_latents.dtype ), num_inference_steps=num_inference_steps, conditioning_data=conditioning_data, noise=noise, timesteps=timesteps, additional_guidance=guidance, run_id=run_id, callback=callback, ) finally: self.invokeai_diffuser.model_forward_callback = self._unet_forward # https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699 torch.cuda.empty_cache() with torch.inference_mode(): image = self.decode_latents(result_latents) output = InvokeAIStableDiffusionPipelineOutput( images=image, nsfw_content_detected=[], attention_map_saver=result_attention_maps, ) return self.check_for_safety(output, dtype=conditioning_data.dtype) def non_noised_latents_from_image(self, init_image, *, device: torch.device, dtype): init_image = init_image.to(device=device, dtype=dtype) with torch.inference_mode(): if device.type == "mps": # workaround for torch MPS bug that has been fixed in https://github.com/kulinseth/pytorch/pull/222 # TODO remove this workaround once kulinseth#222 is merged to pytorch mainline self.vae.to(CPU_DEVICE) init_image = init_image.to(CPU_DEVICE) else: self._model_group.load(self.vae) init_latent_dist = self.vae.encode(init_image).latent_dist init_latents = init_latent_dist.sample().to( dtype=dtype ) # FIXME: uses torch.randn. make reproducible! if device.type == "mps": self.vae.to(device) init_latents = init_latents.to(device) init_latents = 0.18215 * init_latents return init_latents def check_for_safety(self, output, dtype): with torch.inference_mode(): screened_images, has_nsfw_concept = self.run_safety_checker( output.images, dtype=dtype ) screened_attention_map_saver = None if has_nsfw_concept is None or not has_nsfw_concept: screened_attention_map_saver = output.attention_map_saver return InvokeAIStableDiffusionPipelineOutput( screened_images, has_nsfw_concept, # block the attention maps if NSFW content is detected attention_map_saver=screened_attention_map_saver, ) def run_safety_checker(self, image, device=None, dtype=None): # overriding to use the model group for device info instead of requiring the caller to know. if self.safety_checker is not None: device = self._model_group.device_for(self.safety_checker) return super().run_safety_checker(image, device, dtype) @torch.inference_mode() def get_learned_conditioning( self, c: List[List[str]], *, return_tokens=True, fragment_weights=None ): """ Compatibility function for invokeai.models.diffusion.ddpm.LatentDiffusion. """ return self.embeddings_provider.get_embeddings_for_weighted_prompt_fragments( text_batch=c, fragment_weights_batch=fragment_weights, should_return_tokens=return_tokens, device=self._model_group.device_for(self.unet), ) @property def channels(self) -> int: """Compatible with DiffusionWrapper""" return self.unet.config.in_channels def decode_latents(self, latents): # Explicit call to get the vae loaded, since `decode` isn't the forward method. self._model_group.load(self.vae) return super().decode_latents(latents) def debug_latents(self, latents, msg): from invokeai.backend.image_util import debug_image with torch.inference_mode(): decoded = self.numpy_to_pil(self.decode_latents(latents)) for i, img in enumerate(decoded): debug_image( img, f"latents {msg} {i+1}/{len(decoded)}", debug_status=True ) # Copied from diffusers pipeline_stable_diffusion_controlnet.py # Returns torch.Tensor of shape (batch_size, 3, height, width) def prepare_control_image( self, image, # FIXME: need to fix hardwiring of width and height, change to basing on latents dimensions? # latents, width=512, # should be 8 * latent.shape[3] height=512, # should be 8 * latent height[2] batch_size=1, num_images_per_prompt=1, device="cuda", dtype=torch.float16, do_classifier_free_guidance=True, guess_mode=False, soft_injection=False, cfg_injection=False, ): if not isinstance(image, torch.Tensor): if isinstance(image, PIL.Image.Image): image = [image] if isinstance(image[0], PIL.Image.Image): images = [] for image_ in image: image_ = image_.convert("RGB") image_ = image_.resize((width, height), resample=PIL_INTERPOLATION["lanczos"]) image_ = np.array(image_) image_ = image_[None, :] images.append(image_) image = images image = np.concatenate(image, axis=0) image = np.array(image).astype(np.float32) / 255.0 image = image.transpose(0, 3, 1, 2) image = torch.from_numpy(image) elif isinstance(image[0], torch.Tensor): image = torch.cat(image, dim=0) image_batch_size = image.shape[0] if image_batch_size == 1: repeat_by = batch_size else: # image batch size is the same as prompt batch size repeat_by = num_images_per_prompt image = image.repeat_interleave(repeat_by, dim=0) image = image.to(device=device, dtype=dtype) # if do_classifier_free_guidance and not guess_mode: if do_classifier_free_guidance and not cfg_injection: image = torch.cat([image] * 2) return image