''' This module handles the generation of the conditioning tensors. Useful function exports: get_uc_and_c_and_ec() get the conditioned and unconditioned latent, and edited conditioning if we're doing cross-attention control ''' import re from typing import Union, Optional, Any from transformers import CLIPTokenizer from compel import Compel from compel.prompt_parser import FlattenedPrompt, Blend, Fragment, CrossAttentionControlSubstitute, PromptParser from .devices import torch_dtype from ..models.diffusion.shared_invokeai_diffusion import InvokeAIDiffuserComponent from ldm.invoke.globals import Globals def get_tokenizer(model) -> CLIPTokenizer: # TODO remove legacy ckpt fallback handling return (getattr(model, 'tokenizer', None) # diffusers or model.cond_stage_model.tokenizer) # ldm def get_text_encoder(model) -> Any: # TODO remove legacy ckpt fallback handling return (getattr(model, 'text_encoder', None) # diffusers or UnsqueezingLDMTransformer(model.cond_stage_model.transformer)) # ldm class UnsqueezingLDMTransformer: def __init__(self, ldm_transformer): self.ldm_transformer = ldm_transformer @property def device(self): return self.ldm_transformer.device def __call__(self, *args, **kwargs): insufficiently_unsqueezed_tensor = self.ldm_transformer(*args, **kwargs) return insufficiently_unsqueezed_tensor.unsqueeze(0) def get_uc_and_c_and_ec(prompt_string, model, log_tokens=False, skip_normalize_legacy_blend=False): # lazy-load any deferred textual inversions. # this might take a couple of seconds the first time a textual inversion is used. model.textual_inversion_manager.create_deferred_token_ids_for_any_trigger_terms(prompt_string) tokenizer = get_tokenizer(model) text_encoder = get_text_encoder(model) compel = Compel(tokenizer=tokenizer, text_encoder=text_encoder, textual_inversion_manager=model.textual_inversion_manager, dtype_for_device_getter=torch_dtype) # get rid of any newline characters prompt_string = prompt_string.replace("\n", " ") positive_prompt_string, negative_prompt_string = split_prompt_to_positive_and_negative(prompt_string) legacy_blend = try_parse_legacy_blend(positive_prompt_string, skip_normalize_legacy_blend) positive_prompt: FlattenedPrompt|Blend if legacy_blend is not None: positive_prompt = legacy_blend else: positive_prompt = Compel.parse_prompt_string(positive_prompt_string) negative_prompt: FlattenedPrompt|Blend = Compel.parse_prompt_string(negative_prompt_string) if log_tokens or getattr(Globals, "log_tokenization", False): log_tokenization(positive_prompt, negative_prompt, tokenizer=tokenizer) c, options = compel.build_conditioning_tensor_for_prompt_object(positive_prompt) uc, _ = compel.build_conditioning_tensor_for_prompt_object(negative_prompt) tokens_count = get_max_token_count(tokenizer, positive_prompt) ec = InvokeAIDiffuserComponent.ExtraConditioningInfo(tokens_count_including_eos_bos=tokens_count, cross_attention_control_args=options.get( 'cross_attention_control', None)) return uc, c, ec def get_prompt_structure(prompt_string, skip_normalize_legacy_blend: bool = False) -> ( Union[FlattenedPrompt, Blend], FlattenedPrompt): positive_prompt_string, negative_prompt_string = split_prompt_to_positive_and_negative(prompt_string) legacy_blend = try_parse_legacy_blend(positive_prompt_string, skip_normalize_legacy_blend) positive_prompt: FlattenedPrompt|Blend if legacy_blend is not None: positive_prompt = legacy_blend else: positive_prompt = Compel.parse_prompt_string(positive_prompt_string) negative_prompt: FlattenedPrompt|Blend = Compel.parse_prompt_string(negative_prompt_string) return positive_prompt, negative_prompt def get_max_token_count(tokenizer, prompt: Union[FlattenedPrompt, Blend], truncate_if_too_long=True) -> int: if type(prompt) is Blend: blend: Blend = prompt return max([get_max_token_count(tokenizer, c, truncate_if_too_long) for c in blend.prompts]) else: return len(get_tokens_for_prompt_object(tokenizer, prompt, truncate_if_too_long)) def get_tokens_for_prompt_object(tokenizer, parsed_prompt: FlattenedPrompt, truncate_if_too_long=True) -> [str]: if type(parsed_prompt) is Blend: raise ValueError("Blend is not supported here - you need to get tokens for each of its .children") text_fragments = [x.text if type(x) is Fragment else (" ".join([f.text for f in x.original]) if type(x) is CrossAttentionControlSubstitute else str(x)) for x in parsed_prompt.children] text = " ".join(text_fragments) tokens = tokenizer.tokenize(text) if truncate_if_too_long: max_tokens_length = tokenizer.model_max_length - 2 # typically 75 tokens = tokens[0:max_tokens_length] return tokens def split_prompt_to_positive_and_negative(prompt_string_uncleaned: str): unconditioned_words = '' unconditional_regex = r'\[(.*?)\]' unconditionals = re.findall(unconditional_regex, prompt_string_uncleaned) if len(unconditionals) > 0: unconditioned_words = ' '.join(unconditionals) # Remove Unconditioned Words From Prompt unconditional_regex_compile = re.compile(unconditional_regex) clean_prompt = unconditional_regex_compile.sub(' ', prompt_string_uncleaned) prompt_string_cleaned = re.sub(' +', ' ', clean_prompt) else: prompt_string_cleaned = prompt_string_uncleaned return prompt_string_cleaned, unconditioned_words def log_tokenization(positive_prompt: Union[Blend, FlattenedPrompt], negative_prompt: Union[Blend, FlattenedPrompt], tokenizer): print(f"\n>> [TOKENLOG] Parsed Prompt: {positive_prompt}") print(f"\n>> [TOKENLOG] Parsed Negative Prompt: {negative_prompt}") log_tokenization_for_prompt_object(positive_prompt, tokenizer) log_tokenization_for_prompt_object(negative_prompt, tokenizer, display_label_prefix="(negative prompt)") def log_tokenization_for_prompt_object(p: Union[Blend, FlattenedPrompt], tokenizer, display_label_prefix=None): display_label_prefix = display_label_prefix or "" if type(p) is Blend: blend: Blend = p for i, c in enumerate(blend.prompts): log_tokenization_for_prompt_object( c, tokenizer, display_label_prefix=f"{display_label_prefix}(blend part {i + 1}, weight={blend.weights[i]})") elif type(p) is FlattenedPrompt: flattened_prompt: FlattenedPrompt = p if flattened_prompt.wants_cross_attention_control: original_fragments = [] edited_fragments = [] for f in flattened_prompt.children: if type(f) is CrossAttentionControlSubstitute: original_fragments += f.original edited_fragments += f.edited else: original_fragments.append(f) edited_fragments.append(f) original_text = " ".join([x.text for x in original_fragments]) log_tokenization_for_text(original_text, tokenizer, display_label=f"{display_label_prefix}(.swap originals)") edited_text = " ".join([x.text for x in edited_fragments]) log_tokenization_for_text(edited_text, tokenizer, display_label=f"{display_label_prefix}(.swap replacements)") else: text = " ".join([x.text for x in flattened_prompt.children]) log_tokenization_for_text(text, tokenizer, display_label=display_label_prefix) def log_tokenization_for_text(text, tokenizer, display_label=None): """ shows how the prompt is tokenized # usually tokens have '' to indicate end-of-word, # but for readability it has been replaced with ' ' """ tokens = tokenizer.tokenize(text) tokenized = "" discarded = "" usedTokens = 0 totalTokens = len(tokens) for i in range(0, totalTokens): token = tokens[i].replace('', ' ') # alternate color s = (usedTokens % 6) + 1 if i < tokenizer.model_max_length: tokenized = tokenized + f"\x1b[0;3{s};40m{token}" usedTokens += 1 else: # over max token length discarded = discarded + f"\x1b[0;3{s};40m{token}" if usedTokens > 0: print(f'\n>> [TOKENLOG] Tokens {display_label or ""} ({usedTokens}):') print(f'{tokenized}\x1b[0m') if discarded != "": print(f'\n>> [TOKENLOG] Tokens Discarded ({totalTokens - usedTokens}):') print(f'{discarded}\x1b[0m') def try_parse_legacy_blend(text: str, skip_normalize: bool=False) -> Optional[Blend]: weighted_subprompts = split_weighted_subprompts(text, skip_normalize=skip_normalize) if len(weighted_subprompts) <= 1: return None strings = [x[0] for x in weighted_subprompts] weights = [x[1] for x in weighted_subprompts] pp = PromptParser() parsed_conjunctions = [pp.parse_conjunction(x) for x in strings] flattened_prompts = [x.prompts[0] for x in parsed_conjunctions] return Blend(prompts=flattened_prompts, weights=weights, normalize_weights=not skip_normalize) def split_weighted_subprompts(text, skip_normalize=False)->list: """ Legacy blend parsing. grabs all text up to the first occurrence of ':' uses the grabbed text as a sub-prompt, and takes the value following ':' as weight if ':' has no value defined, defaults to 1.0 repeats until no text remaining """ prompt_parser = re.compile(""" (?P # capture group for 'prompt' (?:\\\:|[^:])+ # match one or more non ':' characters or escaped colons '\:' ) # end 'prompt' (?: # non-capture group :+ # match one or more ':' characters (?P # capture group for 'weight' -?\d+(?:\.\d+)? # match positive or negative integer or decimal number )? # end weight capture group, make optional \s* # strip spaces after weight | # OR $ # else, if no ':' then match end of line ) # end non-capture group """, re.VERBOSE) parsed_prompts = [(match.group("prompt").replace("\\:", ":"), float( match.group("weight") or 1)) for match in re.finditer(prompt_parser, text)] if skip_normalize: return parsed_prompts weight_sum = sum(map(lambda x: x[1], parsed_prompts)) if weight_sum == 0: print( "* Warning: Subprompt weights add up to zero. Discarding and using even weights instead.") equal_weight = 1 / max(len(parsed_prompts), 1) return [(x[0], equal_weight) for x in parsed_prompts] return [(x[0], x[1] / weight_sum) for x in parsed_prompts]