from __future__ import annotations import pickle from contextlib import contextmanager from pathlib import Path from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np import torch from compel.embeddings_provider import BaseTextualInversionManager from diffusers.models import UNet2DConditionModel from safetensors.torch import load_file from transformers import CLIPTextModel, CLIPTokenizer from invokeai.app.invocations.shared import FreeUConfig from .models.lora import LoRAModel """ loras = [ (lora_model1, 0.7), (lora_model2, 0.4), ] with LoRAHelper.apply_lora_unet(unet, loras): # unet with applied loras # unmodified unet """ # TODO: rename smth like ModelPatcher and add TI method? class ModelPatcher: @staticmethod def _resolve_lora_key(model: torch.nn.Module, lora_key: str, prefix: str) -> Tuple[str, torch.nn.Module]: assert "." not in lora_key if not lora_key.startswith(prefix): raise Exception(f"lora_key with invalid prefix: {lora_key}, {prefix}") module = model module_key = "" key_parts = lora_key[len(prefix) :].split("_") submodule_name = key_parts.pop(0) while len(key_parts) > 0: try: module = module.get_submodule(submodule_name) module_key += "." + submodule_name submodule_name = key_parts.pop(0) except Exception: submodule_name += "_" + key_parts.pop(0) module = module.get_submodule(submodule_name) module_key = (module_key + "." + submodule_name).lstrip(".") return (module_key, module) @classmethod @contextmanager def apply_lora_unet( cls, unet: UNet2DConditionModel, loras: List[Tuple[LoRAModel, float]], ): with cls.apply_lora(unet, loras, "lora_unet_"): yield @classmethod @contextmanager def apply_lora_text_encoder( cls, text_encoder: CLIPTextModel, loras: List[Tuple[LoRAModel, float]], ): with cls.apply_lora(text_encoder, loras, "lora_te_"): yield @classmethod @contextmanager def apply_sdxl_lora_text_encoder( cls, text_encoder: CLIPTextModel, loras: List[Tuple[LoRAModel, float]], ): with cls.apply_lora(text_encoder, loras, "lora_te1_"): yield @classmethod @contextmanager def apply_sdxl_lora_text_encoder2( cls, text_encoder: CLIPTextModel, loras: List[Tuple[LoRAModel, float]], ): with cls.apply_lora(text_encoder, loras, "lora_te2_"): yield @classmethod @contextmanager def apply_lora( cls, model: torch.nn.Module, loras: List[Tuple[LoRAModel, float]], prefix: str, ): original_weights = dict() try: with torch.no_grad(): for lora, lora_weight in loras: # assert lora.device.type == "cpu" for layer_key, layer in lora.layers.items(): if not layer_key.startswith(prefix): continue # TODO(ryand): A non-negligible amount of time is currently spent resolving LoRA keys. This # should be improved in the following ways: # 1. The key mapping could be more-efficiently pre-computed. This would save time every time a # LoRA model is applied. # 2. From an API perspective, there's no reason that the `ModelPatcher` should be aware of the # intricacies of Stable Diffusion key resolution. It should just expect the input LoRA # weights to have valid keys. module_key, module = cls._resolve_lora_key(model, layer_key, prefix) # All of the LoRA weight calculations will be done on the same device as the module weight. # (Performance will be best if this is a CUDA device.) device = module.weight.device dtype = module.weight.dtype if module_key not in original_weights: original_weights[module_key] = module.weight.detach().to(device="cpu", copy=True) layer_scale = layer.alpha / layer.rank if (layer.alpha and layer.rank) else 1.0 # We intentionally move to the target device first, then cast. Experimentally, this was found to # be significantly faster for 16-bit CPU tensors being moved to a CUDA device than doing the # same thing in a single call to '.to(...)'. layer.to(device=device) layer.to(dtype=torch.float32) # TODO(ryand): Using torch.autocast(...) over explicit casting may offer a speed benefit on CUDA # devices here. Experimentally, it was found to be very slow on CPU. More investigation needed. layer_weight = layer.get_weight(module.weight) * (lora_weight * layer_scale) layer.to(device="cpu") if module.weight.shape != layer_weight.shape: # TODO: debug on lycoris layer_weight = layer_weight.reshape(module.weight.shape) module.weight += layer_weight.to(dtype=dtype) yield # wait for context manager exit finally: with torch.no_grad(): for module_key, weight in original_weights.items(): model.get_submodule(module_key).weight.copy_(weight) @classmethod @contextmanager def apply_ti( cls, tokenizer: CLIPTokenizer, text_encoder: CLIPTextModel, ti_list: List[Tuple[str, Any]], ) -> Tuple[CLIPTokenizer, TextualInversionManager]: init_tokens_count = None new_tokens_added = None try: # HACK: The CLIPTokenizer API does not include a way to remove tokens after calling add_tokens(...). As a # workaround, we create a full copy of `tokenizer` so that its original behavior can be restored after # exiting this `apply_ti(...)` context manager. # # In a previous implementation, the deep copy was obtained with `ti_tokenizer = copy.deepcopy(tokenizer)`, # but a pickle roundtrip was found to be much faster (1 sec vs. 0.05 secs). ti_tokenizer = pickle.loads(pickle.dumps(tokenizer)) ti_manager = TextualInversionManager(ti_tokenizer) init_tokens_count = text_encoder.resize_token_embeddings(None).num_embeddings def _get_trigger(ti_name, index): trigger = ti_name if index > 0: trigger += f"-!pad-{i}" return f"<{trigger}>" # modify tokenizer new_tokens_added = 0 for ti_name, ti in ti_list: for i in range(ti.embedding.shape[0]): new_tokens_added += ti_tokenizer.add_tokens(_get_trigger(ti_name, i)) # modify text_encoder text_encoder.resize_token_embeddings(init_tokens_count + new_tokens_added) model_embeddings = text_encoder.get_input_embeddings() for ti_name, ti in ti_list: ti_tokens = [] for i in range(ti.embedding.shape[0]): embedding = ti.embedding[i] trigger = _get_trigger(ti_name, i) token_id = ti_tokenizer.convert_tokens_to_ids(trigger) if token_id == ti_tokenizer.unk_token_id: raise RuntimeError(f"Unable to find token id for token '{trigger}'") if model_embeddings.weight.data[token_id].shape != embedding.shape: raise ValueError( f"Cannot load embedding for {trigger}. It was trained on a model with token dimension" f" {embedding.shape[0]}, but the current model has token dimension" f" {model_embeddings.weight.data[token_id].shape[0]}." ) model_embeddings.weight.data[token_id] = embedding.to( device=text_encoder.device, dtype=text_encoder.dtype ) ti_tokens.append(token_id) if len(ti_tokens) > 1: ti_manager.pad_tokens[ti_tokens[0]] = ti_tokens[1:] yield ti_tokenizer, ti_manager finally: if init_tokens_count and new_tokens_added: text_encoder.resize_token_embeddings(init_tokens_count) @classmethod @contextmanager def apply_clip_skip( cls, text_encoder: CLIPTextModel, clip_skip: int, ): skipped_layers = [] try: for i in range(clip_skip): skipped_layers.append(text_encoder.text_model.encoder.layers.pop(-1)) yield finally: while len(skipped_layers) > 0: text_encoder.text_model.encoder.layers.append(skipped_layers.pop()) @classmethod @contextmanager def apply_freeu( cls, unet: UNet2DConditionModel, freeu_config: Optional[FreeUConfig] = None, ): did_apply_freeu = False try: if freeu_config is not None: unet.enable_freeu(b1=freeu_config.b1, b2=freeu_config.b2, s1=freeu_config.s1, s2=freeu_config.s2) did_apply_freeu = True yield finally: if did_apply_freeu: unet.disable_freeu() class TextualInversionModel: embedding: torch.Tensor # [n, 768]|[n, 1280] @classmethod def from_checkpoint( cls, file_path: Union[str, Path], device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None, ): if not isinstance(file_path, Path): file_path = Path(file_path) result = cls() # TODO: if file_path.suffix == ".safetensors": state_dict = load_file(file_path.absolute().as_posix(), device="cpu") else: state_dict = torch.load(file_path, map_location="cpu") # both v1 and v2 format embeddings # difference mostly in metadata if "string_to_param" in state_dict: if len(state_dict["string_to_param"]) > 1: print( f'Warn: Embedding "{file_path.name}" contains multiple tokens, which is not supported. The first' " token will be used." ) result.embedding = next(iter(state_dict["string_to_param"].values())) # v3 (easynegative) elif "emb_params" in state_dict: result.embedding = state_dict["emb_params"] # v4(diffusers bin files) else: result.embedding = next(iter(state_dict.values())) if len(result.embedding.shape) == 1: result.embedding = result.embedding.unsqueeze(0) if not isinstance(result.embedding, torch.Tensor): raise ValueError(f"Invalid embeddings file: {file_path.name}") return result class TextualInversionManager(BaseTextualInversionManager): pad_tokens: Dict[int, List[int]] tokenizer: CLIPTokenizer def __init__(self, tokenizer: CLIPTokenizer): self.pad_tokens = dict() self.tokenizer = tokenizer def expand_textual_inversion_token_ids_if_necessary(self, token_ids: list[int]) -> list[int]: if len(self.pad_tokens) == 0: return token_ids if token_ids[0] == self.tokenizer.bos_token_id: raise ValueError("token_ids must not start with bos_token_id") if token_ids[-1] == self.tokenizer.eos_token_id: raise ValueError("token_ids must not end with eos_token_id") new_token_ids = [] for token_id in token_ids: new_token_ids.append(token_id) if token_id in self.pad_tokens: new_token_ids.extend(self.pad_tokens[token_id]) return new_token_ids class ONNXModelPatcher: from diffusers import OnnxRuntimeModel from .models.base import IAIOnnxRuntimeModel @classmethod @contextmanager def apply_lora_unet( cls, unet: OnnxRuntimeModel, loras: List[Tuple[LoRAModel, float]], ): with cls.apply_lora(unet, loras, "lora_unet_"): yield @classmethod @contextmanager def apply_lora_text_encoder( cls, text_encoder: OnnxRuntimeModel, loras: List[Tuple[LoRAModel, float]], ): with cls.apply_lora(text_encoder, loras, "lora_te_"): yield # based on # https://github.com/ssube/onnx-web/blob/ca2e436f0623e18b4cfe8a0363fcfcf10508acf7/api/onnx_web/convert/diffusion/lora.py#L323 @classmethod @contextmanager def apply_lora( cls, model: IAIOnnxRuntimeModel, loras: List[Tuple[LoRAModel, float]], prefix: str, ): from .models.base import IAIOnnxRuntimeModel if not isinstance(model, IAIOnnxRuntimeModel): raise Exception("Only IAIOnnxRuntimeModel models supported") orig_weights = dict() try: blended_loras = dict() for lora, lora_weight in loras: for layer_key, layer in lora.layers.items(): if not layer_key.startswith(prefix): continue layer.to(dtype=torch.float32) layer_key = layer_key.replace(prefix, "") # TODO: rewrite to pass original tensor weight(required by ia3) layer_weight = layer.get_weight(None).detach().cpu().numpy() * lora_weight if layer_key is blended_loras: blended_loras[layer_key] += layer_weight else: blended_loras[layer_key] = layer_weight node_names = dict() for node in model.nodes.values(): node_names[node.name.replace("/", "_").replace(".", "_").lstrip("_")] = node.name for layer_key, lora_weight in blended_loras.items(): conv_key = layer_key + "_Conv" gemm_key = layer_key + "_Gemm" matmul_key = layer_key + "_MatMul" if conv_key in node_names or gemm_key in node_names: if conv_key in node_names: conv_node = model.nodes[node_names[conv_key]] else: conv_node = model.nodes[node_names[gemm_key]] weight_name = [n for n in conv_node.input if ".weight" in n][0] orig_weight = model.tensors[weight_name] if orig_weight.shape[-2:] == (1, 1): if lora_weight.shape[-2:] == (1, 1): new_weight = orig_weight.squeeze((3, 2)) + lora_weight.squeeze((3, 2)) else: new_weight = orig_weight.squeeze((3, 2)) + lora_weight new_weight = np.expand_dims(new_weight, (2, 3)) else: if orig_weight.shape != lora_weight.shape: new_weight = orig_weight + lora_weight.reshape(orig_weight.shape) else: new_weight = orig_weight + lora_weight orig_weights[weight_name] = orig_weight model.tensors[weight_name] = new_weight.astype(orig_weight.dtype) elif matmul_key in node_names: weight_node = model.nodes[node_names[matmul_key]] matmul_name = [n for n in weight_node.input if "MatMul" in n][0] orig_weight = model.tensors[matmul_name] new_weight = orig_weight + lora_weight.transpose() orig_weights[matmul_name] = orig_weight model.tensors[matmul_name] = new_weight.astype(orig_weight.dtype) else: # warn? err? pass yield finally: # restore original weights for name, orig_weight in orig_weights.items(): model.tensors[name] = orig_weight @classmethod @contextmanager def apply_ti( cls, tokenizer: CLIPTokenizer, text_encoder: IAIOnnxRuntimeModel, ti_list: List[Tuple[str, Any]], ) -> Tuple[CLIPTokenizer, TextualInversionManager]: from .models.base import IAIOnnxRuntimeModel if not isinstance(text_encoder, IAIOnnxRuntimeModel): raise Exception("Only IAIOnnxRuntimeModel models supported") orig_embeddings = None try: # HACK: The CLIPTokenizer API does not include a way to remove tokens after calling add_tokens(...). As a # workaround, we create a full copy of `tokenizer` so that its original behavior can be restored after # exiting this `apply_ti(...)` context manager. # # In a previous implementation, the deep copy was obtained with `ti_tokenizer = copy.deepcopy(tokenizer)`, # but a pickle roundtrip was found to be much faster (1 sec vs. 0.05 secs). ti_tokenizer = pickle.loads(pickle.dumps(tokenizer)) ti_manager = TextualInversionManager(ti_tokenizer) def _get_trigger(ti_name, index): trigger = ti_name if index > 0: trigger += f"-!pad-{i}" return f"<{trigger}>" # modify tokenizer new_tokens_added = 0 for ti_name, ti in ti_list: for i in range(ti.embedding.shape[0]): new_tokens_added += ti_tokenizer.add_tokens(_get_trigger(ti_name, i)) # modify text_encoder orig_embeddings = text_encoder.tensors["text_model.embeddings.token_embedding.weight"] embeddings = np.concatenate( (np.copy(orig_embeddings), np.zeros((new_tokens_added, orig_embeddings.shape[1]))), axis=0, ) for ti_name, ti in ti_list: ti_tokens = [] for i in range(ti.embedding.shape[0]): embedding = ti.embedding[i].detach().numpy() trigger = _get_trigger(ti_name, i) token_id = ti_tokenizer.convert_tokens_to_ids(trigger) if token_id == ti_tokenizer.unk_token_id: raise RuntimeError(f"Unable to find token id for token '{trigger}'") if embeddings[token_id].shape != embedding.shape: raise ValueError( f"Cannot load embedding for {trigger}. It was trained on a model with token dimension" f" {embedding.shape[0]}, but the current model has token dimension" f" {embeddings[token_id].shape[0]}." ) embeddings[token_id] = embedding ti_tokens.append(token_id) if len(ti_tokens) > 1: ti_manager.pad_tokens[ti_tokens[0]] = ti_tokens[1:] text_encoder.tensors["text_model.embeddings.token_embedding.weight"] = embeddings.astype( orig_embeddings.dtype ) yield ti_tokenizer, ti_manager finally: # restore if orig_embeddings is not None: text_encoder.tensors["text_model.embeddings.token_embedding.weight"] = orig_embeddings