"""wrapper around part of Katherine Crowson's k-diffusion library, making it call compatible with other Samplers""" import k_diffusion as K import torch import torch.nn as nn from ldm.dream.devices import choose_torch_device from ldm.models.diffusion.sampler import Sampler class CFGDenoiser(nn.Module): def __init__(self, model): super().__init__() self.inner_model = model def forward(self, x, sigma, uncond, cond, cond_scale): x_in = torch.cat([x] * 2) sigma_in = torch.cat([sigma] * 2) cond_in = torch.cat([uncond, cond]) uncond, cond = self.inner_model(x_in, sigma_in, cond=cond_in).chunk(2) return uncond + (cond - uncond) * cond_scale class KSampler(Sampler): def __init__(self, model, schedule='lms', device=None, **kwargs): denoiser = K.external.CompVisDenoiser(model) super().__init__( denoiser, schedule, steps=model.num_timesteps, ) self.ds = None self.s_in = None def forward(self, x, sigma, uncond, cond, cond_scale): x_in = torch.cat([x] * 2) sigma_in = torch.cat([sigma] * 2) cond_in = torch.cat([uncond, cond]) uncond, cond = self.inner_model( x_in, sigma_in, cond=cond_in ).chunk(2) return uncond + (cond - uncond) * cond_scale def make_schedule( self, ddim_num_steps, ddim_discretize='uniform', ddim_eta=0.0, verbose=False, ): outer_model = self.model self.model = outer_model.inner_model super().make_schedule( ddim_num_steps, ddim_discretize='uniform', ddim_eta=0.0, verbose=False, ) self.model = outer_model self.ddim_num_steps = ddim_num_steps sigmas = K.sampling.get_sigmas_karras( n=ddim_num_steps, sigma_min=self.model.sigmas[0].item(), sigma_max=self.model.sigmas[-1].item(), rho=7., device=self.device, # Birch-san recommends this, but it doesn't match the call signature in his branch of k-diffusion # concat_zero=False ) self.sigmas = sigmas # ALERT: We are completely overriding the sample() method in the base class, which # means that inpainting will (probably?) not work correctly. To get this to work # we need to be able to modify the inner loop of k_heun, k_lms, etc, as is done # in an ugly way in the lstein/k-diffusion branch. # Most of these arguments are ignored and are only present for compatibility with # other samples @torch.no_grad() def sample( self, S, batch_size, shape, conditioning=None, callback=None, normals_sequence=None, img_callback=None, quantize_x0=False, eta=0.0, mask=None, x0=None, temperature=1.0, noise_dropout=0.0, score_corrector=None, corrector_kwargs=None, verbose=True, x_T=None, log_every_t=100, unconditional_guidance_scale=1.0, unconditional_conditioning=None, # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ... **kwargs, ): def route_callback(k_callback_values): if img_callback is not None: img_callback(k_callback_values['x']) # sigmas = self.model.get_sigmas(S) # sigmas are now set up in make_schedule - we take the last steps items sigmas = self.sigmas[-S:] if x_T is not None: x = x_T * sigmas[0] else: x = ( torch.randn([batch_size, *shape], device=self.device) * sigmas[0] ) # for GPU draw model_wrap_cfg = CFGDenoiser(self.model) extra_args = { 'cond': conditioning, 'uncond': unconditional_conditioning, 'cond_scale': unconditional_guidance_scale, } print(f'>> Sampling with k__{self.schedule}') return ( K.sampling.__dict__[f'sample_{self.schedule}']( model_wrap_cfg, x, sigmas, extra_args=extra_args, callback=route_callback ), None, ) @torch.no_grad() def p_sample( self, img, cond, ts, index, unconditional_guidance_scale=1.0, unconditional_conditioning=None, **kwargs, ): if self.model_wrap is None: self.model_wrap = CFGDenoiser(self.model) extra_args = { 'cond': cond, 'uncond': unconditional_conditioning, 'cond_scale': unconditional_guidance_scale, } if self.s_in is None: self.s_in = img.new_ones([img.shape[0]]) if self.ds is None: self.ds = [] # terrible, confusing names here steps = self.ddim_num_steps t_enc = self.t_enc # sigmas is a full steps in length, but t_enc might # be less. We start in the middle of the sigma array # and work our way to the end after t_enc steps. # index starts at t_enc and works its way to zero, # so the actual formula for indexing into sigmas: # sigma_index = (steps-index) s_index = t_enc - index - 1 img = K.sampling.__dict__[f'_{self.schedule}']( self.model_wrap, img, self.sigmas, s_index, s_in = self.s_in, ds = self.ds, extra_args=extra_args, ) return img, None, None def get_initial_image(self,x_T,shape,steps): if x_T is not None: return x_T + x_T * self.sigmas[0] else: return (torch.randn(shape, device=self.device) * self.sigmas[0]) def prepare_to_sample(self,t_enc): self.t_enc = t_enc self.model_wrap = None self.ds = None self.s_in = None def q_sample(self,x0,ts): ''' Overrides parent method to return the q_sample of the inner model. ''' return self.model.inner_model.q_sample(x0,ts) @torch.no_grad() def decode( self, z_enc, cond, t_enc, img_callback=None, unconditional_guidance_scale=1.0, unconditional_conditioning=None, use_original_steps=False, init_latent = None, mask = None, ): samples,_ = self.sample( batch_size = 1, S = t_enc, x_T = z_enc, shape = z_enc.shape[1:], conditioning = cond, unconditional_guidance_scale=unconditional_guidance_scale, unconditional_conditioning = unconditional_conditioning, img_callback = img_callback, x0 = init_latent, mask = mask ) return samples