# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654) import random from typing import Literal, Optional from pydantic import BaseModel, Field import torch from invokeai.app.invocations.util.choose_model import choose_model from invokeai.app.util.step_callback import stable_diffusion_step_callback from ...backend.model_management.model_manager import ModelManager from ...backend.util.devices import choose_torch_device, torch_dtype from ...backend.stable_diffusion.diffusion.shared_invokeai_diffusion import PostprocessingSettings from ...backend.image_util.seamless import configure_model_padding from ...backend.prompting.conditioning import get_uc_and_c_and_ec from ...backend.stable_diffusion.diffusers_pipeline import ConditioningData, StableDiffusionGeneratorPipeline from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationContext, InvocationConfig import numpy as np from ..services.image_storage import ImageType from .baseinvocation import BaseInvocation, InvocationContext from .image import ImageField, ImageOutput, build_image_output from ...backend.stable_diffusion import PipelineIntermediateState from diffusers.schedulers import SchedulerMixin as Scheduler import diffusers from diffusers import DiffusionPipeline class LatentsField(BaseModel): """A latents field used for passing latents between invocations""" latents_name: Optional[str] = Field(default=None, description="The name of the latents") class Config: schema_extra = {"required": ["latents_name"]} class LatentsOutput(BaseInvocationOutput): """Base class for invocations that output latents""" #fmt: off type: Literal["latent_output"] = "latent_output" latents: LatentsField = Field(default=None, description="The output latents") #fmt: on class NoiseOutput(BaseInvocationOutput): """Invocation noise output""" #fmt: off type: Literal["noise_output"] = "noise_output" noise: LatentsField = Field(default=None, description="The output noise") #fmt: on # TODO: this seems like a hack scheduler_map = dict( ddim=diffusers.DDIMScheduler, dpmpp_2=diffusers.DPMSolverMultistepScheduler, k_dpm_2=diffusers.KDPM2DiscreteScheduler, k_dpm_2_a=diffusers.KDPM2AncestralDiscreteScheduler, k_dpmpp_2=diffusers.DPMSolverMultistepScheduler, k_euler=diffusers.EulerDiscreteScheduler, k_euler_a=diffusers.EulerAncestralDiscreteScheduler, k_heun=diffusers.HeunDiscreteScheduler, k_lms=diffusers.LMSDiscreteScheduler, plms=diffusers.PNDMScheduler, ) SAMPLER_NAME_VALUES = Literal[ tuple(list(scheduler_map.keys())) ] def get_scheduler(scheduler_name:str, model: StableDiffusionGeneratorPipeline)->Scheduler: scheduler_class = scheduler_map.get(scheduler_name,'ddim') scheduler = scheduler_class.from_config(model.scheduler.config) # hack copied over from generate.py if not hasattr(scheduler, 'uses_inpainting_model'): scheduler.uses_inpainting_model = lambda: False return scheduler def get_noise(width:int, height:int, device:torch.device, seed:int = 0, latent_channels:int=4, use_mps_noise:bool=False, downsampling_factor:int = 8): # limit noise to only the diffusion image channels, not the mask channels input_channels = min(latent_channels, 4) use_device = "cpu" if (use_mps_noise or device.type == "mps") else device generator = torch.Generator(device=use_device).manual_seed(seed) x = torch.randn( [ 1, input_channels, height // downsampling_factor, width // downsampling_factor, ], dtype=torch_dtype(device), device=use_device, generator=generator, ).to(device) # if self.perlin > 0.0: # perlin_noise = self.get_perlin_noise( # width // self.downsampling_factor, height // self.downsampling_factor # ) # x = (1 - self.perlin) * x + self.perlin * perlin_noise return x def random_seed(): return random.randint(0, np.iinfo(np.uint32).max) class NoiseInvocation(BaseInvocation): """Generates latent noise.""" type: Literal["noise"] = "noise" # Inputs seed: int = Field(ge=0, le=np.iinfo(np.uint32).max, description="The seed to use", default_factory=random_seed) width: int = Field(default=512, multiple_of=8, gt=0, description="The width of the resulting noise", ) height: int = Field(default=512, multiple_of=8, gt=0, description="The height of the resulting noise", ) # Schema customisation class Config(InvocationConfig): schema_extra = { "ui": { "tags": ["latents", "noise"], }, } def invoke(self, context: InvocationContext) -> NoiseOutput: device = torch.device(choose_torch_device()) noise = get_noise(self.width, self.height, device, self.seed) name = f'{context.graph_execution_state_id}__{self.id}' context.services.latents.set(name, noise) return NoiseOutput( noise=LatentsField(latents_name=name) ) # Text to image class TextToLatentsInvocation(BaseInvocation): """Generates latents from a prompt.""" type: Literal["t2l"] = "t2l" # Inputs # TODO: consider making prompt optional to enable providing prompt through a link # fmt: off prompt: Optional[str] = Field(description="The prompt to generate an image from") noise: Optional[LatentsField] = Field(description="The noise to use") steps: int = Field(default=10, gt=0, description="The number of steps to use to generate the image") cfg_scale: float = Field(default=7.5, gt=0, description="The Classifier-Free Guidance, higher values may result in a result closer to the prompt", ) scheduler: SAMPLER_NAME_VALUES = Field(default="k_lms", description="The scheduler to use" ) seamless: bool = Field(default=False, description="Whether or not to generate an image that can tile without seams", ) seamless_axes: str = Field(default="", description="The axes to tile the image on, 'x' and/or 'y'") model: str = Field(default="", description="The model to use (currently ignored)") progress_images: bool = Field(default=False, description="Whether or not to produce progress images during generation", ) # fmt: on # Schema customisation class Config(InvocationConfig): schema_extra = { "ui": { "tags": ["latents", "image"], "type_hints": { "model": "model" } }, } # TODO: pass this an emitter method or something? or a session for dispatching? def dispatch_progress( self, context: InvocationContext, source_node_id: str, intermediate_state: PipelineIntermediateState ) -> None: stable_diffusion_step_callback( context=context, intermediate_state=intermediate_state, node=self.dict(), source_node_id=source_node_id, ) def get_model(self, model_manager: ModelManager) -> StableDiffusionGeneratorPipeline: model_info = choose_model(model_manager, self.model) model_name = model_info['model_name'] model_hash = model_info['hash'] model: StableDiffusionGeneratorPipeline = model_info['model'] model.scheduler = get_scheduler( model=model, scheduler_name=self.scheduler ) if isinstance(model, DiffusionPipeline): for component in [model.unet, model.vae]: configure_model_padding(component, self.seamless, self.seamless_axes ) else: configure_model_padding(model, self.seamless, self.seamless_axes ) return model def get_conditioning_data(self, model: StableDiffusionGeneratorPipeline) -> ConditioningData: uc, c, extra_conditioning_info = get_uc_and_c_and_ec(self.prompt, model=model) conditioning_data = ConditioningData( uc, c, self.cfg_scale, extra_conditioning_info, postprocessing_settings=PostprocessingSettings( threshold=0.0,#threshold, warmup=0.2,#warmup, h_symmetry_time_pct=None,#h_symmetry_time_pct, v_symmetry_time_pct=None#v_symmetry_time_pct, ), ).add_scheduler_args_if_applicable(model.scheduler, eta=None)#ddim_eta) return conditioning_data def invoke(self, context: InvocationContext) -> LatentsOutput: noise = context.services.latents.get(self.noise.latents_name) # Get the source node id (we are invoking the prepared node) graph_execution_state = context.services.graph_execution_manager.get(context.graph_execution_state_id) source_node_id = graph_execution_state.prepared_source_mapping[self.id] def step_callback(state: PipelineIntermediateState): self.dispatch_progress(context, source_node_id, state) model = self.get_model(context.services.model_manager) conditioning_data = self.get_conditioning_data(model) # TODO: Verify the noise is the right size result_latents, result_attention_map_saver = model.latents_from_embeddings( latents=torch.zeros_like(noise, dtype=torch_dtype(model.device)), noise=noise, num_inference_steps=self.steps, conditioning_data=conditioning_data, callback=step_callback ) # https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699 torch.cuda.empty_cache() name = f'{context.graph_execution_state_id}__{self.id}' context.services.latents.set(name, result_latents) return LatentsOutput( latents=LatentsField(latents_name=name) ) class LatentsToLatentsInvocation(TextToLatentsInvocation): """Generates latents using latents as base image.""" type: Literal["l2l"] = "l2l" # Schema customisation class Config(InvocationConfig): schema_extra = { "ui": { "tags": ["latents"], "type_hints": { "model": "model" } }, } # Inputs latents: Optional[LatentsField] = Field(description="The latents to use as a base image") strength: float = Field(default=0.5, description="The strength of the latents to use") def invoke(self, context: InvocationContext) -> LatentsOutput: noise = context.services.latents.get(self.noise.latents_name) latent = context.services.latents.get(self.latents.latents_name) # Get the source node id (we are invoking the prepared node) graph_execution_state = context.services.graph_execution_manager.get(context.graph_execution_state_id) source_node_id = graph_execution_state.prepared_source_mapping[self.id] def step_callback(state: PipelineIntermediateState): self.dispatch_progress(context, source_node_id, state) model = self.get_model(context.services.model_manager) conditioning_data = self.get_conditioning_data(model) # TODO: Verify the noise is the right size initial_latents = latent if self.strength < 1.0 else torch.zeros_like( latent, device=model.device, dtype=latent.dtype ) timesteps, _ = model.get_img2img_timesteps( self.steps, self.strength, device=model.device, ) result_latents, result_attention_map_saver = model.latents_from_embeddings( latents=initial_latents, timesteps=timesteps, noise=noise, num_inference_steps=self.steps, conditioning_data=conditioning_data, callback=step_callback ) # https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699 torch.cuda.empty_cache() name = f'{context.graph_execution_state_id}__{self.id}' context.services.latents.set(name, result_latents) return LatentsOutput( latents=LatentsField(latents_name=name) ) # Latent to image class LatentsToImageInvocation(BaseInvocation): """Generates an image from latents.""" type: Literal["l2i"] = "l2i" # Inputs latents: Optional[LatentsField] = Field(description="The latents to generate an image from") model: str = Field(default="", description="The model to use") # Schema customisation class Config(InvocationConfig): schema_extra = { "ui": { "tags": ["latents", "image"], "type_hints": { "model": "model" } }, } @torch.no_grad() def invoke(self, context: InvocationContext) -> ImageOutput: latents = context.services.latents.get(self.latents.latents_name) # TODO: this only really needs the vae model_info = choose_model(context.services.model_manager, self.model) model: StableDiffusionGeneratorPipeline = model_info['model'] with torch.inference_mode(): np_image = model.decode_latents(latents) image = model.numpy_to_pil(np_image)[0] image_type = ImageType.RESULT image_name = context.services.images.create_name( context.graph_execution_state_id, self.id ) metadata = context.services.metadata.build_metadata( session_id=context.graph_execution_state_id, node=self ) torch.cuda.empty_cache() context.services.images.save(image_type, image_name, image, metadata) return build_image_output( image_type=image_type, image_name=image_name, image=image ) LATENTS_INTERPOLATION_MODE = Literal[ "nearest", "linear", "bilinear", "bicubic", "trilinear", "area", "nearest-exact" ] class ResizeLatentsInvocation(BaseInvocation): """Resizes latents to explicit width/height (in pixels). Provided dimensions are floor-divided by 8.""" type: Literal["lresize"] = "lresize" # Inputs latents: Optional[LatentsField] = Field(description="The latents to resize") width: int = Field(ge=64, multiple_of=8, description="The width to resize to (px)") height: int = Field(ge=64, multiple_of=8, description="The height to resize to (px)") mode: Optional[LATENTS_INTERPOLATION_MODE] = Field(default="bilinear", description="The interpolation mode") antialias: Optional[bool] = Field(default=False, description="Whether or not to antialias (applied in bilinear and bicubic modes only)") def invoke(self, context: InvocationContext) -> LatentsOutput: latents = context.services.latents.get(self.latents.latents_name) resized_latents = torch.nn.functional.interpolate( latents, size=(self.height // 8, self.width // 8), mode=self.mode, antialias=self.antialias if self.mode in ["bilinear", "bicubic"] else False, ) # https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699 torch.cuda.empty_cache() name = f"{context.graph_execution_state_id}__{self.id}" context.services.latents.set(name, resized_latents) return LatentsOutput(latents=LatentsField(latents_name=name)) class ScaleLatentsInvocation(BaseInvocation): """Scales latents by a given factor.""" type: Literal["lscale"] = "lscale" # Inputs latents: Optional[LatentsField] = Field(description="The latents to scale") scale_factor: float = Field(gt=0, description="The factor by which to scale the latents") mode: Optional[LATENTS_INTERPOLATION_MODE] = Field(default="bilinear", description="The interpolation mode") antialias: Optional[bool] = Field(default=False, description="Whether or not to antialias (applied in bilinear and bicubic modes only)") def invoke(self, context: InvocationContext) -> LatentsOutput: latents = context.services.latents.get(self.latents.latents_name) # resizing resized_latents = torch.nn.functional.interpolate( latents, scale_factor=self.scale_factor, mode=self.mode, antialias=self.antialias if self.mode in ["bilinear", "bicubic"] else False, ) # https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699 torch.cuda.empty_cache() name = f"{context.graph_execution_state_id}__{self.id}" context.services.latents.set(name, resized_latents) return LatentsOutput(latents=LatentsField(latents_name=name))