import os import sys import torch from argparse import Namespace from invokeai.backend import Args from omegaconf import OmegaConf from pathlib import Path from typing import types import invokeai.version from ...backend import ModelManager from ...backend.util import choose_precision, choose_torch_device from ...backend import Globals # TODO: Replace with an abstract class base ModelManagerBase def get_model_manager(config: Args, logger: types.ModuleType) -> ModelManager: if not config.conf: config_file = os.path.join(Globals.root, "configs", "models.yaml") if not os.path.exists(config_file): report_model_error( config, FileNotFoundError(f"The file {config_file} could not be found."), logger ) logger.info(f"{invokeai.version.__app_name__}, version {invokeai.version.__version__}") logger.info(f'InvokeAI runtime directory is "{Globals.root}"') # these two lines prevent a horrible warning message from appearing # when the frozen CLIP tokenizer is imported import transformers # type: ignore transformers.logging.set_verbosity_error() import diffusers diffusers.logging.set_verbosity_error() # normalize the config directory relative to root if not os.path.isabs(config.conf): config.conf = os.path.normpath(os.path.join(Globals.root, config.conf)) if config.embeddings: if not os.path.isabs(config.embedding_path): embedding_path = os.path.normpath( os.path.join(Globals.root, config.embedding_path) ) else: embedding_path = config.embedding_path else: embedding_path = None # migrate legacy models ModelManager.migrate_models() # creating the model manager try: device = torch.device(choose_torch_device()) precision = 'float16' if config.precision=='float16' \ else 'float32' if config.precision=='float32' \ else choose_precision(device) model_manager = ModelManager( OmegaConf.load(config.conf), precision=precision, device_type=device, max_loaded_models=config.max_loaded_models, embedding_path = Path(embedding_path), logger = logger, ) except (FileNotFoundError, TypeError, AssertionError) as e: report_model_error(config, e, logger) except (IOError, KeyError) as e: logger.error(f"{e}. Aborting.") sys.exit(-1) # try to autoconvert new models # autoimport new .ckpt files if path := config.autoconvert: model_manager.autoconvert_weights( conf_path=config.conf, weights_directory=path, ) logger.info('Model manager initialized') return model_manager def report_model_error(opt: Namespace, e: Exception, logger: types.ModuleType): logger.error(f'An error occurred while attempting to initialize the model: "{str(e)}"') logger.error( "This can be caused by a missing or corrupted models file, and can sometimes be fixed by (re)installing the models." ) yes_to_all = os.environ.get("INVOKE_MODEL_RECONFIGURE") if yes_to_all: logger.warning( "Reconfiguration is being forced by environment variable INVOKE_MODEL_RECONFIGURE" ) else: response = input( "Do you want to run invokeai-configure script to select and/or reinstall models? [y] " ) if response.startswith(("n", "N")): return logger.info("invokeai-configure is launching....\n") # Match arguments that were set on the CLI # only the arguments accepted by the configuration script are parsed root_dir = ["--root", opt.root_dir] if opt.root_dir is not None else [] config = ["--config", opt.conf] if opt.conf is not None else [] sys.argv = ["invokeai-configure"] sys.argv.extend(root_dir) sys.argv.extend(config.to_dict()) if yes_to_all is not None: for arg in yes_to_all.split(): sys.argv.append(arg) from invokeai.frontend.install import invokeai_configure invokeai_configure() # TODO: Figure out how to restart # print('** InvokeAI will now restart') # sys.argv = previous_args # main() # would rather do a os.exec(), but doesn't exist? # sys.exit(0)