Stable Diffusion Dream Script
This is a fork of CompVis/stable-diffusion, the wonderful open source
text-to-image generator. This fork supports:
1. An interactive command-line interface that accepts the same prompt
and switches as the Discord bot.
2. A basic Web interface that allows you to run a local web server for
generating images in your browser.
3. Support for img2img in which you provide a seed image to guide the
image creation. (inpainting & masking coming soon)
4. Preliminary inpainting support.
5. A notebook for running the code on Google Colab.
6. Upscaling and face fixing using the optional ESRGAN and GFPGAN
packages.
7. Weighted subprompts for prompt tuning.
7. [Image variations](VARIATIONS.md) which allow you to systematically
generate variations of an image you like and combine two or more
images together to combine the best features of both.
9. Textual inversion for customization of the prompt language and images.
10. ...and more!
This fork is rapidly evolving, so use the Issues panel to report bugs
and make feature requests, and check back periodically for
improvements and bug fixes.
# Table of Contents
1. [Major Features](#features)
2. [Changelog](#latest-changes)
3. [Installation](#installation)
1. [Linux](#linux)
1. [Windows](#windows)
1. [MacOS](README-Mac-MPS.md)
4. [Troubleshooting](#troubleshooting)
5. [Contributing](#contributing)
6. [Support](#support)
# Features
## Interactive command-line interface similar to the Discord bot
The _dream.py_ script, located in scripts/dream.py,
provides an interactive interface to image generation similar to
the "dream mothership" bot that Stable AI provided on its Discord
server. Unlike the txt2img.py and img2img.py scripts provided in the
original CompViz/stable-diffusion source code repository, the
time-consuming initialization of the AI model
initialization only happens once. After that image generation
from the command-line interface is very fast.
The script uses the readline library to allow for in-line editing,
command history (up and down arrows), autocompletion, and more. To help
keep track of which prompts generated which images, the script writes a
log file of image names and prompts to the selected output directory.
In addition, as of version 1.02, it also writes the prompt into the PNG
file's metadata where it can be retrieved using scripts/images2prompt.py
The script is confirmed to work on Linux, Windows and Mac
systems. Note that this script runs from the command-line or can be used
as a Web application. The Web GUI is currently rudimentary, but a much
better replacement is on its way.
```
(ldm) ~/stable-diffusion$ python3 ./scripts/dream.py
* Initializing, be patient...
Loading model from models/ldm/text2img-large/model.ckpt
(...more initialization messages...)
* Initialization done! Awaiting your command...
dream> ashley judd riding a camel -n2 -s150
Outputs:
outputs/img-samples/00009.png: "ashley judd riding a camel" -n2 -s150 -S 416354203
outputs/img-samples/00010.png: "ashley judd riding a camel" -n2 -s150 -S 1362479620
dream> "there's a fly in my soup" -n6 -g
outputs/img-samples/00011.png: "there's a fly in my soup" -n6 -g -S 2685670268
seeds for individual rows: [2685670268, 1216708065, 2335773498, 822223658, 714542046, 3395302430]
dream> q
# this shows how to retrieve the prompt stored in the saved image's metadata
(ldm) ~/stable-diffusion$ python ./scripts/images2prompt.py outputs/img_samples/*.png
00009.png: "ashley judd riding a camel" -s150 -S 416354203
00010.png: "ashley judd riding a camel" -s150 -S 1362479620
00011.png: "there's a fly in my soup" -n6 -g -S 2685670268
```
The dream> prompt's arguments are pretty much identical to those used
in the Discord bot, except you don't need to type "!dream" (it doesn't
hurt if you do). A significant change is that creation of individual
images is now the default unless --grid (-g) is given. For backward
compatibility, the -i switch is recognized. For command-line help
type -h (or --help) at the dream> prompt.
The script itself also recognizes a series of command-line switches
that will change important global defaults, such as the directory for
image outputs and the location of the model weight files.
## Hardware Requirements
You will need one of:
1. An NVIDIA-based graphics card with 8 GB or more of VRAM memory*.
2. An Apple computer with an M1 chip.**
3. At least 12 GB of main memory RAM.
4. At least 6 GB of free disk space for the machine learning model,
python, and all its dependencies.
* If you are have a Nvidia 10xx series card (e.g. the 1080ti), please
run the dream script in full-precision mode as shown below.
** Similarly, specify full-precision mode on Apple M1 hardware.
To run in full-precision mode, start dream.py with the
--full_precision flag:
~~~~
(ldm) ~/stable-diffusion$ python scripts/dream.py --full_precision
~~~~
## Image-to-Image
This script also provides an img2img feature that lets you seed your
creations with an initial drawing or photo. This is a really cool
feature that tells stable diffusion to build the prompt on top of the
image you provide, preserving the original's basic shape and
layout. To use it, provide the --init_img option as shown here:
```
dream> "waterfall and rainbow" --init_img=./init-images/crude_drawing.png --strength=0.5 -s100 -n4
```
The --init_img (-I) option gives the path to the seed
picture. --strength (-f) controls how much the original will be
modified, ranging from 0.0 (keep the original intact), to 1.0 (ignore
the original completely). The default is 0.75, and ranges from
0.25-0.75 give interesting results.
You may also pass a -v option to generate count variants on the
original image. This is done by passing the first generated image back
into img2img the requested number of times. It generates interesting
variants.
If the initial image contains transparent regions, then Stable
Diffusion will only draw within the transparent regions, a process
called "inpainting". However, for this to work correctly, the color
information underneath the transparent needs to be preserved, not
erased. See [Creating Transparent Images for
Inpainting](#creating-transparent-images-for-inpainting) for details.
## Seamless Tiling
The seamless tiling mode causes generated images to seamlessly tile
with itself. To use it, add the --seamless option when starting the
script which will result in all generated images to tile, or for each
dream> prompt as shown here:
```
dream> "pond garden with lotus by claude monet" --seamless -s100 -n4
```
## GFPGAN and Real-ESRGAN Support
The script also provides the ability to do face restoration and
upscaling with the help of GFPGAN and Real-ESRGAN respectively.
To use the ability, clone the **[GFPGAN
repository](https://github.com/TencentARC/GFPGAN)** and follow their
installation instructions. By default, we expect GFPGAN to be
installed in a 'GFPGAN' sibling directory. Be sure that the `"ldm"`
conda environment is active as you install GFPGAN.
You can use the `--gfpgan_dir` argument with `dream.py` to set a
custom path to your GFPGAN directory. _There are other GFPGAN related
boot arguments if you wish to customize further._
You can install **Real-ESRGAN** by typing the following command.
```
pip install realesrgan
```
**Note: Internet connection needed:**
Users whose GPU machines are isolated from the Internet (e.g. on a
University cluster) should be aware that the first time you run
dream.py with GFPGAN and Real-ESRGAN turned on, it will try to
download model files from the Internet. To rectify this, you may run
`python3 scripts/preload_models.py` after you have installed GFPGAN
and all its dependencies.
**Usage**
You will now have access to two new prompt arguments.
**Upscaling**
`-U : `
The upscaling prompt argument takes two values. The first value is a
scaling factor and should be set to either `2` or `4` only. This will
either scale the image 2x or 4x respectively using different models.
You can set the scaling stength between `0` and `1.0` to control
intensity of the of the scaling. This is handy because AI upscalers
generally tend to smooth out texture details. If you wish to retain
some of those for natural looking results, we recommend using values
between `0.5 to 0.8`.
If you do not explicitly specify an upscaling_strength, it will
default to 0.75.
**Face Restoration**
`-G : `
This prompt argument controls the strength of the face restoration
that is being applied. Similar to upscaling, values between `0.5 to 0.8` are recommended.
You can use either one or both without any conflicts. In cases where
you use both, the image will be first upscaled and then the face
restoration process will be executed to ensure you get the highest
quality facial features.
`--save_orig`
When you use either `-U` or `-G`, the final result you get is upscaled
or face modified. If you want to save the original Stable Diffusion
generation, you can use the `-save_orig` prompt argument to save the
original unaffected version too.
**Example Usage**
```
dream > superman dancing with a panda bear -U 2 0.6 -G 0.4
```
This also works with img2img:
```
dream> a man wearing a pineapple hat -I path/to/your/file.png -U 2 0.5 -G 0.6
```
**Note**
GFPGAN and Real-ESRGAN are both memory intensive. In order to avoid
crashes and memory overloads during the Stable Diffusion process,
these effects are applied after Stable Diffusion has completed its
work.
In single image generations, you will see the output right away but
when you are using multiple iterations, the images will first be
generated and then upscaled and face restored after that process is
complete. While the image generation is taking place, you will still
be able to preview the base images.
If you wish to stop during the image generation but want to upscale or
face restore a particular generated image, pass it again with the same
prompt and generated seed along with the `-U` and `-G` prompt
arguments to perform those actions.
## Google Colab
Stable Diffusion AI Notebook:
Open and follow instructions to use an isolated environment running Dream.
Output example:
![Colab Notebook](static/colab_notebook.png)
## Barebones Web Server
As of version 1.10, this distribution comes with a bare bones web
server (see screenshot). To use it, run the _dream.py_ script by
adding the **--web** option.
```
(ldm) ~/stable-diffusion$ python3 scripts/dream.py --web
```
You can then connect to the server by pointing your web browser at
http://localhost:9090, or to the network name or IP address of the server.
Kudos to [Tesseract Cat](https://github.com/TesseractCat) for
contributing this code, and to [dagf2101](https://github.com/dagf2101)
for refining it.
![Dream Web Server](static/dream_web_server.png)
## Reading Prompts from a File
You can automate dream.py by providing a text file with the prompts
you want to run, one line per prompt. The text file must be composed
with a text editor (e.g. Notepad) and not a word processor. Each line
should look like what you would type at the dream> prompt:
```
a beautiful sunny day in the park, children playing -n4 -C10
stormy weather on a mountain top, goats grazing -s100
innovative packaging for a squid's dinner -S137038382
```
Then pass this file's name to dream.py when you invoke it:
```
(ldm) ~/stable-diffusion$ python3 scripts/dream.py --from_file "path/to/prompts.txt"
```
You may read a series of prompts from standard input by providing a filename of "-":
```
(ldm) ~/stable-diffusion$ echo "a beautiful day" | python3 scripts/dream.py --from_file -
```
## Shortcut for reusing seeds from the previous command
Since it is so common to reuse seeds while refining a prompt, there is
now a shortcut as of version 1.11. Provide a **-S** (or **--seed**)
switch of -1 to use the seed of the most recent image generated. If
you produced multiple images with the **-n** switch, then you can go
back further using -2, -3, etc. up to the first image generated by the
previous command. Sorry, but you can't go back further than one
command.
Here's an example of using this to do a quick refinement. It also
illustrates using the new **-G** switch to turn on upscaling and
face enhancement (see previous section):
```
dream> a cute child playing hopscotch -G0.5
[...]
outputs/img-samples/000039.3498014304.png: "a cute child playing hopscotch" -s50 -W512 -H512 -C7.5 -mk_lms -S3498014304
# I wonder what it will look like if I bump up the steps and set facial enhancement to full strength?
dream> a cute child playing hopscotch -G1.0 -s100 -S -1
reusing previous seed 3498014304
[...]
outputs/img-samples/000040.3498014304.png: "a cute child playing hopscotch" -G1.0 -s100 -W512 -H512 -C7.5 -mk_lms -S3498014304
```
## Weighted Prompts
You may weight different sections of the prompt to tell the sampler to attach different levels of
priority to them, by adding :(number) to the end of the section you wish to up- or downweight.
For example consider this prompt:
```
tabby cat:0.25 white duck:0.75 hybrid
```
This will tell the sampler to invest 25% of its effort on the tabby
cat aspect of the image and 75% on the white duck aspect
(surprisingly, this example actually works). The prompt weights can
use any combination of integers and floating point numbers, and they
do not need to add up to 1.
## Personalizing Text-to-Image Generation
You may personalize the generated images to provide your own styles or objects by training a new LDM checkpoint
and introducing a new vocabulary to the fixed model.
To train, prepare a folder that contains images sized at 512x512 and execute the following:
WINDOWS: As the default backend is not available on Windows, if you're using that platform, set the environment variable `PL_TORCH_DISTRIBUTED_BACKEND=gloo`
```
(ldm) ~/stable-diffusion$ python3 ./main.py --base ./configs/stable-diffusion/v1-finetune.yaml \
-t \
--actual_resume ./models/ldm/stable-diffusion-v1/model.ckpt \
-n my_cat \
--gpus 0, \
--data_root D:/textual-inversion/my_cat \
--init_word 'cat'
```
During the training process, files will be created in /logs/[project][time][project]/
where you can see the process.
conditioning\* contains the training prompts
inputs, reconstruction the input images for the training epoch
samples, samples scaled for a sample of the prompt and one with the init word provided
On a RTX3090, the process for SD will take ~1h @1.6 iterations/sec.
Note: According to the associated paper, the optimal number of images
is 3-5. Your model may not converge if you use more images than that.
Training will run indefinately, but you may wish to stop it before the
heat death of the universe, when you find a low loss epoch or around
~5000 iterations.
Once the model is trained, specify the trained .pt file when starting
dream using
```
(ldm) ~/stable-diffusion$ python3 ./scripts/dream.py --embedding_path /path/to/embedding.pt --full_precision
```
Then, to utilize your subject at the dream prompt
```
dream> "a photo of *"
```
this also works with image2image
```
dream> "waterfall and rainbow in the style of *" --init_img=./init-images/crude_drawing.png --strength=0.5 -s100 -n4
```
It's also possible to train multiple tokens (modify the placeholder string in configs/stable-diffusion/v1-finetune.yaml) and combine LDM checkpoints using:
```
(ldm) ~/stable-diffusion$ python3 ./scripts/merge_embeddings.py \
--manager_ckpts /path/to/first/embedding.pt /path/to/second/embedding.pt [...] \
--output_path /path/to/output/embedding.pt
```
Credit goes to @rinongal and the repository located at
https://github.com/rinongal/textual_inversion Please see the
repository and associated paper for details and limitations.
# Latest Changes
- v1.14 (In progress)
- Add "seamless mode" for circular tiling of image. Generates beautiful effects. ([prixt](https://github.com/prixt))
- v1.13 (3 September 2022
- Support image variations (see [VARIATIONS](VARIATIONS.md) ([Kevin Gibbons](https://github.com/bakkot) and many contributors and reviewers)
- Supports a Google Colab notebook for a standalone server running on Google hardware [Arturo Mendivil](https://github.com/artmen1516)
- WebUI supports GFPGAN/ESRGAN facial reconstruction and upscaling [Kevin Gibbons](https://github.com/bakkot)
- WebUI supports incremental display of in-progress images during generation [Kevin Gibbons](https://github.com/bakkot)
- A new configuration file scheme that allows new models (including upcoming stable-diffusion-v1.5)
to be added without altering the code. ([David Wager](https://github.com/maddavid12))
- Can specify --grid on dream.py command line as the default.
- Miscellaneous internal bug and stability fixes.
- Works on M1 Apple hardware.
- Multiple bug fixes.
For older changelogs, please visit **[CHANGELOGS](CHANGELOG.md)**.
# Installation
There are separate installation walkthroughs for [Linux](#linux), [Windows](#windows) and [Macintosh](#Macintosh)
## Linux
1. You will need to install the following prerequisites if they are not already available. Use your
operating system's preferred installer
- Python (version 3.8.5 recommended; higher may work)
- git
2. Install the Python Anaconda environment manager.
```
~$ wget https://repo.anaconda.com/archive/Anaconda3-2022.05-Linux-x86_64.sh
~$ chmod +x Anaconda3-2022.05-Linux-x86_64.sh
~$ ./Anaconda3-2022.05-Linux-x86_64.sh
```
After installing anaconda, you should log out of your system and log back in. If the installation
worked, your command prompt will be prefixed by the name of the current anaconda environment, "(base)".
3. Copy the stable-diffusion source code from GitHub:
```
(base) ~$ git clone https://github.com/lstein/stable-diffusion.git
```
This will create stable-diffusion folder where you will follow the rest of the steps.
4. Enter the newly-created stable-diffusion folder. From this step forward make sure that you are working in the stable-diffusion directory!
```
(base) ~$ cd stable-diffusion
(base) ~/stable-diffusion$
```
5. Use anaconda to copy necessary python packages, create a new python environment named "ldm",
and activate the environment.
```
(base) ~/stable-diffusion$ conda env create -f environment.yaml
(base) ~/stable-diffusion$ conda activate ldm
(ldm) ~/stable-diffusion$
```
After these steps, your command prompt will be prefixed by "(ldm)" as shown above.
6. Load a couple of small machine-learning models required by stable diffusion:
```
(ldm) ~/stable-diffusion$ python3 scripts/preload_models.py
```
Note that this step is necessary because I modified the original
just-in-time model loading scheme to allow the script to work on GPU
machines that are not internet connected. See [Workaround for machines with limited internet connectivity](#workaround-for-machines-with-limited-internet-connectivity)
7. Now you need to install the weights for the stable diffusion model.
For running with the released weights, you will first need to set up an acount with Hugging Face (https://huggingface.co).
Use your credentials to log in, and then point your browser at https://huggingface.co/CompVis/stable-diffusion-v-1-4-original.
You may be asked to sign a license agreement at this point.
Click on "Files and versions" near the top of the page, and then click on the file named "sd-v1-4.ckpt". You'll be taken
to a page that prompts you to click the "download" link. Save the file somewhere safe on your local machine.
Now run the following commands from within the stable-diffusion directory. This will create a symbolic
link from the stable-diffusion model.ckpt file, to the true location of the sd-v1-4.ckpt file.
```
(ldm) ~/stable-diffusion$ mkdir -p models/ldm/stable-diffusion-v1
(ldm) ~/stable-diffusion$ ln -sf /path/to/sd-v1-4.ckpt models/ldm/stable-diffusion-v1/model.ckpt
```
8. Start generating images!
```
# for the pre-release weights use the -l or --liaon400m switch
(ldm) ~/stable-diffusion$ python3 scripts/dream.py -l
# for the post-release weights do not use the switch
(ldm) ~/stable-diffusion$ python3 scripts/dream.py
# for additional configuration switches and arguments, use -h or --help
(ldm) ~/stable-diffusion$ python3 scripts/dream.py -h
```
9. Subsequently, to relaunch the script, be sure to run "conda activate ldm" (step 5, second command), enter the "stable-diffusion"
directory, and then launch the dream script (step 8). If you forget to activate the ldm environment, the script will fail with multiple ModuleNotFound errors.
### Updating to newer versions of the script
This distribution is changing rapidly. If you used the "git clone" method (step 5) to download the stable-diffusion directory, then to update to the latest and greatest version, launch the Anaconda window, enter "stable-diffusion", and type:
```
(ldm) ~/stable-diffusion$ git pull
```
This will bring your local copy into sync with the remote one.
## Windows
### Notebook install (semi-automated)
We have a
[Jupyter notebook](https://github.com/lstein/stable-diffusion/blob/main/Stable-Diffusion-local-Windows.ipynb)
with cell-by-cell installation steps. It will download the code in this repo as
one of the steps, so instead of cloning this repo, simply download the notebook
from the link above and load it up in VSCode (with the
appropriate extensions installed)/Jupyter/JupyterLab and start running the cells one-by-one.
Note that you will need NVIDIA drivers, Python 3.10, and Git installed
beforehand - simplified
[step-by-step instructions](https://github.com/lstein/stable-diffusion/wiki/Easy-peasy-Windows-install)
are available in the wiki (you'll only need steps 1, 2, & 3 ).
### Manual installs
#### pip
See
[Easy-peasy Windows install](https://github.com/lstein/stable-diffusion/wiki/Easy-peasy-Windows-install)
in the wiki
#### Conda
1. Install Anaconda3 (miniconda3 version) from here: https://docs.anaconda.com/anaconda/install/windows/
2. Install Git from here: https://git-scm.com/download/win
3. Launch Anaconda from the Windows Start menu. This will bring up a command window. Type all the remaining commands in this window.
4. Run the command:
```
git clone https://github.com/lstein/stable-diffusion.git
```
This will create stable-diffusion folder where you will follow the rest of the steps.
5. Enter the newly-created stable-diffusion folder. From this step forward make sure that you are working in the stable-diffusion directory!
```
cd stable-diffusion
```
6. Run the following two commands:
```
conda env create -f environment.yaml (step 6a)
conda activate ldm (step 6b)
```
This will install all python requirements and activate the "ldm" environment which sets PATH and other environment variables properly.
7. Run the command:
```
python scripts\preload_models.py
```
This installs several machine learning models that stable diffusion
requires. (Note that this step is required. I created it because some people
are using GPU systems that are behind a firewall and the models can't be
downloaded just-in-time)
8. Now you need to install the weights for the big stable diffusion model.
For running with the released weights, you will first need to set up
an acount with Hugging Face (https://huggingface.co). Use your
credentials to log in, and then point your browser at
https://huggingface.co/CompVis/stable-diffusion-v-1-4-original. You
may be asked to sign a license agreement at this point.
Click on "Files and versions" near the top of the page, and then click
on the file named "sd-v1-4.ckpt". You'll be taken to a page that
prompts you to click the "download" link. Now save the file somewhere
safe on your local machine. The weight file is >4 GB in size, so
downloading may take a while.
Now run the following commands from **within the stable-diffusion
directory** to copy the weights file to the right place:
```
mkdir -p models\ldm\stable-diffusion-v1
copy C:\path\to\sd-v1-4.ckpt models\ldm\stable-diffusion-v1\model.ckpt
```
Please replace "C:\path\to\sd-v1.4.ckpt" with the correct path to wherever
you stashed this file. If you prefer not to copy or move the .ckpt file,
you may instead create a shortcut to it from within
"models\ldm\stable-diffusion-v1\".
9. Start generating images!
```
# for the pre-release weights
python scripts\dream.py -l
# for the post-release weights
python scripts\dream.py
```
10. Subsequently, to relaunch the script, first activate the Anaconda
command window (step 3), enter the stable-diffusion directory (step 5,
"cd \path\to\stable-diffusion"), run "conda activate ldm" (step 6b),
and then launch the dream script (step 9).
**Note:** Tildebyte has written an alternative ["Easy peasy Windows
install"](https://github.com/lstein/stable-diffusion/wiki/Easy-peasy-Windows-install)
which uses the Windows Powershell and pew. If you are having trouble
with Anaconda on Windows, give this a try (or try it first!)
### Updating to newer versions of the script
This distribution is changing rapidly. If you used the "git clone"
method (step 5) to download the stable-diffusion directory, then to
update to the latest and greatest version, launch the Anaconda window,
enter "stable-diffusion", and type:
```
git pull
```
This will bring your local copy into sync with the remote one.
## Macintosh
See [README-Mac-MPS](README-Mac-MPS.md) for instructions.
# Simplified API for text to image generation
For programmers who wish to incorporate stable-diffusion into other
products, this repository includes a simplified API for text to image
generation, which lets you create images from a prompt in just three
lines of code:
```
from ldm.simplet2i import T2I
model = T2I()
outputs = model.txt2img("a unicorn in manhattan")
```
Outputs is a list of lists in the format [[filename1,seed1],[filename2,seed2]...]
Please see ldm/simplet2i.py for more information. A set of example scripts is
coming RSN.
# Workaround for machines with limited internet connectivity
My development machine is a GPU node in a high-performance compute
cluster which has no connection to the internet. During model
initialization, stable-diffusion tries to download the Bert tokenizer
and a file needed by the kornia library. This obviously didn't work
for me.
To work around this, I have modified ldm/modules/encoders/modules.py
to look for locally cached Bert files rather than attempting to
download them. For this to work, you must run
"scripts/preload_models.py" once from an internet-connected machine
prior to running the code on an isolated one. This assumes that both
machines share a common network-mounted filesystem with a common
.cache directory.
```
(ldm) ~/stable-diffusion$ python3 ./scripts/preload_models.py
preloading bert tokenizer...
Downloading: 100%|██████████████████████████████████| 28.0/28.0 [00:00<00:00, 49.3kB/s]
Downloading: 100%|██████████████████████████████████| 226k/226k [00:00<00:00, 2.79MB/s]
Downloading: 100%|██████████████████████████████████| 455k/455k [00:00<00:00, 4.36MB/s]
Downloading: 100%|██████████████████████████████████| 570/570 [00:00<00:00, 477kB/s]
...success
preloading kornia requirements...
Downloading: "https://github.com/DagnyT/hardnet/raw/master/pretrained/train_liberty_with_aug/checkpoint_liberty_with_aug.pth" to /u/lstein/.cache/torch/hub/checkpoints/checkpoint_liberty_with_aug.pth
100%|███████████████████████████████████████████████| 5.10M/5.10M [00:00<00:00, 101MB/s]
...success
```
# Troubleshooting
Here are a few common installation problems and their solutions. Often
these are caused by incomplete installations or crashes during the
install process.
- PROBLEM: During "conda env create -f environment.yaml", conda
hangs indefinitely.
- SOLUTION: Enter the stable-diffusion directory and completely
remove the "src" directory and all its contents. The safest way
to do this is to enter the stable-diffusion directory and
give the command "git clean -f". If this still doesn't fix
the problem, try "conda clean -all" and then restart at the
"conda env create" step.
---
- PROBLEM: dream.py crashes with the complaint that it can't find
ldm.simplet2i.py. Or it complains that function is being passed
incorrect parameters.
- SOLUTION: Reinstall the stable diffusion modules. Enter the
stable-diffusion directory and give the command "pip install -e ."
---
- PROBLEM: dream.py dies, complaining of various missing modules, none
of which starts with "ldm".
- SOLUTION: From within the stable-diffusion directory, run "conda env
update -f environment.yaml" This is also frequently the solution to
complaints about an unknown function in a module.
---
- PROBLEM: There's a feature or bugfix in the Stable Diffusion GitHub
that you want to try out.
- SOLUTION: If the fix/feature is on the "main" branch, enter the stable-diffusion
directory and do a "git pull". Usually this will be sufficient, but if
you start to see errors about missing or incorrect modules, use the
command "pip install -e ." and/or "conda env update -f environment.yaml"
(These commands won't break anything.)
- If the feature/fix is on a branch (e.g. "foo-bugfix"), the recipe is similar, but
do a "git pull ".
- If the feature/fix is in a pull request that has not yet been made
part of the main branch or a feature/bugfix branch, then from the page
for the desired pull request, look for the line at the top that reads
"xxxx wants to merge xx commits into lstein:main from YYYYYY". Copy
the URL in YYYY. It should have the format
https://github.com//stable-diffusion/tree/
- Then **go to the directory above stable-diffusion**, and rename the
directory to "stable-diffusion.lstein", "stable-diffusion.old", or
whatever. You can then git clone the branch that contains the
pull request:
```
git clone https://github.com//stable-diffusion/tree/
```
You will need to go through the install procedure again, but it should
be fast because all the dependencies are already loaded.
# Creating Transparent Regions for Inpainting
Inpainting is really cool. To do it, you start with an initial image
and use a photoeditor to make one or more regions transparent
(i.e. they have a "hole" in them). You then provide the path to this
image at the dream> command line using the -I switch. Stable Diffusion
will only paint within the transparent region.
There's a catch. In the current implementation, you have to prepare
the initial image correctly so that the underlying colors are
preserved under the transparent area. Many imaging editing
applications will by default erase the color information under the
transparent pixels and replace them with white or black, which will
lead to suboptimal inpainting. You also must take care to export the
PNG file in such a way that the color information is preserved.
If your photoeditor is erasing the underlying color information,
dream.py will give you a big fat warning. If you can't find a way to
coax your photoeditor to retain color values under transparent areas,
then you can combine the -I and -M switches to provide both the
original unedited image and the masked (partially transparent) image:
~~~~
dream> man with cat on shoulder -I./images/man.png -M./images/man-transparent.png
~~~~
We are hoping to get rid of the need for this workaround in an
upcoming release.
## Recipe for GIMP
GIMP is a popular Linux photoediting tool.
1. Open image in GIMP.
2. Layer->Transparency->Add Alpha Channel
2. Use lasoo tool to select region to mask
3. Choose Select -> Float to create a floating selection
4. Open the Layers toolbar (^L) and select "Floating Selection"
5. Set opacity to 0%
6. Export as PNG
7. In the export dialogue, Make sure the "Save colour values from
transparent pixels" checkbox is selected.
# Contributing
Anyone who wishes to contribute to this project, whether
documentation, features, bug fixes, code cleanup, testing, or code
reviews, is very much encouraged to do so. If you are unfamiliar with
how to contribute to GitHub projects, here is a [Getting Started
Guide](https://opensource.com/article/19/7/create-pull-request-github).
A full set of contribution guidelines, along with templates, are in
progress, but for now the most important thing is to **make your pull
request against the "development" branch**, and not against
"main". This will help keep public breakage to a minimum and will
allow you to propose more radical changes.
# Support
For support,
please use this repository's GitHub Issues tracking service. Feel free
to send me an email if you use and like the script.
_Original Author:_ Lincoln D. Stein
_Contributions by:_
[Peter Kowalczyk](https://github.com/slix), [Henry Harrison](https://github.com/hwharrison),
[xraxra](https://github.com/xraxra), [bmaltais](https://github.com/bmaltais), [Sean McLellan](https://github.com/Oceanswave),
[nicolai256](https://github.com/nicolai256), [Benjamin Warner](https://github.com/warner-benjamin),
[tildebyte](https://github.com/tildebyte),[yunsaki](https://github.com/yunsaki), [James Reynolds][https://github.com/magnusviri],
[Tesseract Cat](https://github.com/TesseractCat), and many more!
(If you have contributed and don't see your name on the list of
contributors, please let lstein know about the omission, or make a
pull request)
Original portions of the software are Copyright (c) 2020 Lincoln D. Stein (https://github.com/lstein)
# Further Reading
Please see the original README for more information on this software
and underlying algorithm, located in the file [README-CompViz.md](README-CompViz.md).