import networkx as nx import uuid import copy from abc import ABC, abstractmethod from pydantic import BaseModel, Field from fastapi_events.handlers.local import local_handler from fastapi_events.typing import Event from typing import ( Optional, Union, ) from invokeai.app.invocations.baseinvocation import ( BaseInvocation, ) from invokeai.app.services.events import EventServiceBase from invokeai.app.services.graph import Graph, GraphExecutionState from invokeai.app.services.invoker import Invoker InvocationsUnion = Union[BaseInvocation.get_invocations()] # type: ignore class Batch(BaseModel): data: list[InvocationsUnion] = Field(description="Mapping of ") node_id: str = Field(description="ID of the node to batch") class BatchProcess(BaseModel): batch_id: Optional[str] = Field(default_factory=uuid.uuid4().__str__, description="Identifier for this batch") sessions: list[str] = Field( description="Tracker for which batch is currently being processed", default_factory=list ) batches: list[Batch] = Field( description="List of batch configs to apply to this session", default_factory=list, ) batch_indices: list[int] = Field( description="Tracker for which batch is currently being processed", default_factory=list ) graph: Graph = Field(description="The graph being executed") class BatchManagerBase(ABC): @abstractmethod def start(self, invoker: Invoker): pass @abstractmethod def run_batch_process(self, batches: list[Batch], graph: Graph) -> BatchProcess: pass @abstractmethod def cancel_batch_process(self, batch_process_id: str): pass class BatchManager(BatchManagerBase): """Responsible for managing currently running and scheduled batch jobs""" __invoker: Invoker __batches: list[BatchProcess] def start(self, invoker) -> None: # if we do want multithreading at some point, we could make this configurable self.__invoker = invoker self.__batches = list() local_handler.register(event_name=EventServiceBase.session_event, _func=self.on_event) async def on_event(self, event: Event): event_name = event[1]["event"] match event_name: case "graph_execution_state_complete": await self.process(event) case "invocation_error": await self.process(event) return event async def process(self, event: Event): data = event[1]["data"] batchTarget = None for batch in self.__batches: if data["graph_execution_state_id"] in batch.sessions: batchTarget = batch break if batchTarget == None: return if sum(batchTarget.batch_indices) == 0: self.__batches = [batch for batch in self.__batches if batch != batchTarget] return batchTarget.batch_indices = self._next_batch_index(batchTarget) ges = self._next_batch_session(batchTarget) batchTarget.sessions.append(ges.id) self.__invoker.services.graph_execution_manager.set(ges) self.__invoker.invoke(ges, invoke_all=True) def _next_batch_session(self, batch_process: BatchProcess) -> GraphExecutionState: graph = copy.deepcopy(batch_process.graph) batches = batch_process.batches g = graph.nx_graph_flat() sorted_nodes = nx.topological_sort(g) for npath in sorted_nodes: node = graph.get_node(npath) (index, batch) = next(((i, b) for i, b in enumerate(batches) if b.node_id in node.id), (None, None)) if batch: batch_index = batch_process.batch_indices[index] datum = batch.data[batch_index] datum.id = node.id graph.update_node(npath, datum) return GraphExecutionState(graph=graph) def _next_batch_index(self, batch_process: BatchProcess): batch_indicies = batch_process.batch_indices.copy() for index in range(len(batch_indicies)): if batch_indicies[index] > 0: batch_indicies[index] -= 1 break return batch_indicies def run_batch_process(self, batches: list[Batch], graph: Graph) -> BatchProcess: batch_indices = list() for batch in batches: batch_indices.append(len(batch.data) - 1) batch_process = BatchProcess( batches=batches, batch_indices=batch_indices, graph=graph, ) ges = self._next_batch_session(batch_process) batch_process.sessions.append(ges.id) self.__batches.append(batch_process) self.__invoker.services.graph_execution_manager.set(ges) self.__invoker.invoke(ges, invoke_all=True) return batch_process def cancel_batch_process(self, batch_process_id: str): self.__batches = [batch for batch in self.__batches if batch.id != batch_process_id]