from typing import Optional import torch import torch.nn.functional as F from diffusers.models.attention_processor import Attention, AttnProcessor2_0 from diffusers.utils import USE_PEFT_BACKEND from invokeai.backend.ip_adapter.ip_attention_weights import IPAttentionProcessorWeights from invokeai.backend.stable_diffusion.diffusion.regional_prompt_data import RegionalPromptData class CustomAttnProcessor2_0(AttnProcessor2_0): """A custom implementation of AttnProcessor2_0 that supports additional Invoke features. This implementation is based on https://github.com/huggingface/diffusers/blame/fcfa270fbd1dc294e2f3a505bae6bcb791d721c3/src/diffusers/models/attention_processor.py#L1204 Supported custom features: - IP-Adapter - Regional prompt attention """ def __init__( self, ip_adapter_weights: Optional[list[IPAttentionProcessorWeights]] = None, ip_adapter_scales: Optional[list[float]] = None, ): """Initialize a CustomAttnProcessor2_0. Note: Arguments that are the same for all attention layers are passed to __call__(). Arguments that are layer-specific are passed to __init__(). Args: ip_adapter_weights: The IP-Adapter attention weights. ip_adapter_weights[i] contains the attention weights for the i'th IP-Adapter. ip_adapter_scales: The IP-Adapter attention scales. ip_adapter_scales[i] contains the attention scale for the i'th IP-Adapter. """ super().__init__() self._ip_adapter_weights = ip_adapter_weights self._ip_adapter_scales = ip_adapter_scales assert (self._ip_adapter_weights is None) == (self._ip_adapter_scales is None) if self._ip_adapter_weights is not None: assert len(ip_adapter_weights) == len(ip_adapter_scales) def _is_ip_adapter_enabled(self) -> bool: return self._ip_adapter_weights is not None def __call__( self, attn: Attention, hidden_states: torch.FloatTensor, encoder_hidden_states: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, temb: Optional[torch.FloatTensor] = None, scale: float = 1.0, # For regional prompting: regional_prompt_data: Optional[RegionalPromptData] = None, percent_through: Optional[torch.FloatTensor] = None, # For IP-Adapter: ip_adapter_image_prompt_embeds: Optional[list[torch.Tensor]] = None, ) -> torch.FloatTensor: """Apply attention. Args: regional_prompt_data: The regional prompt data for the current batch. If not None, this will be used to apply regional prompt masking. ip_adapter_image_prompt_embeds: The IP-Adapter image prompt embeddings for the current batch. ip_adapter_image_prompt_embeds[i] contains the image prompt embeddings for the i'th IP-Adapter. Each tensor has shape (batch_size, num_ip_images, seq_len, ip_embedding_len). """ # If true, we are doing cross-attention, if false we are doing self-attention. is_cross_attention = encoder_hidden_states is not None # Start unmodified block from AttnProcessor2_0. # vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv residual = hidden_states if attn.spatial_norm is not None: hidden_states = attn.spatial_norm(hidden_states, temb) input_ndim = hidden_states.ndim if input_ndim == 4: batch_size, channel, height, width = hidden_states.shape hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) batch_size, sequence_length, _ = ( hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape ) # ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ # End unmodified block from AttnProcessor2_0. # Handle regional prompt attention masks. if regional_prompt_data is not None and is_cross_attention: assert percent_through is not None _, query_seq_len, _ = hidden_states.shape prompt_region_attention_mask = regional_prompt_data.get_cross_attn_mask( query_seq_len=query_seq_len, key_seq_len=sequence_length ) if attention_mask is None: attention_mask = prompt_region_attention_mask else: attention_mask = prompt_region_attention_mask + attention_mask # Start unmodified block from AttnProcessor2_0. # vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv if attention_mask is not None: attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) # scaled_dot_product_attention expects attention_mask shape to be # (batch, heads, source_length, target_length) attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) if attn.group_norm is not None: hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) args = () if USE_PEFT_BACKEND else (scale,) query = attn.to_q(hidden_states, *args) if encoder_hidden_states is None: encoder_hidden_states = hidden_states elif attn.norm_cross: encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) key = attn.to_k(encoder_hidden_states, *args) value = attn.to_v(encoder_hidden_states, *args) inner_dim = key.shape[-1] head_dim = inner_dim // attn.heads query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) # the output of sdp = (batch, num_heads, seq_len, head_dim) # TODO: add support for attn.scale when we move to Torch 2.1 hidden_states = F.scaled_dot_product_attention( query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False ) hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) hidden_states = hidden_states.to(query.dtype) # ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ # End unmodified block from AttnProcessor2_0. # Apply IP-Adapter conditioning. if is_cross_attention and self._is_ip_adapter_enabled(): if self._is_ip_adapter_enabled(): assert ip_adapter_image_prompt_embeds is not None for ipa_embed, ipa_weights, scale in zip( ip_adapter_image_prompt_embeds, self._ip_adapter_weights, self._ip_adapter_scales, strict=True ): # The batch dimensions should match. assert ipa_embed.shape[0] == encoder_hidden_states.shape[0] # The token_len dimensions should match. assert ipa_embed.shape[-1] == encoder_hidden_states.shape[-1] ip_hidden_states = ipa_embed # Expected ip_hidden_state shape: (batch_size, num_ip_images, ip_seq_len, ip_image_embedding) ip_key = ipa_weights.to_k_ip(ip_hidden_states) ip_value = ipa_weights.to_v_ip(ip_hidden_states) # Expected ip_key and ip_value shape: (batch_size, num_ip_images, ip_seq_len, head_dim * num_heads) ip_key = ip_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) # Expected ip_key and ip_value shape: (batch_size, num_heads, num_ip_images * ip_seq_len, head_dim) # TODO: add support for attn.scale when we move to Torch 2.1 ip_hidden_states = F.scaled_dot_product_attention( query, ip_key, ip_value, attn_mask=None, dropout_p=0.0, is_causal=False ) # Expected ip_hidden_states shape: (batch_size, num_heads, query_seq_len, head_dim) ip_hidden_states = ip_hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) ip_hidden_states = ip_hidden_states.to(query.dtype) # Expected ip_hidden_states shape: (batch_size, query_seq_len, num_heads * head_dim) hidden_states = hidden_states + scale * ip_hidden_states else: # If IP-Adapter is not enabled, then ip_adapter_image_prompt_embeds should not be passed in. assert ip_adapter_image_prompt_embeds is None # Start unmodified block from AttnProcessor2_0. # vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv # linear proj hidden_states = attn.to_out[0](hidden_states, *args) # dropout hidden_states = attn.to_out[1](hidden_states) if input_ndim == 4: hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) if attn.residual_connection: hidden_states = hidden_states + residual hidden_states = hidden_states / attn.rescale_output_factor return hidden_states