''' ldm.invoke.globals defines a small number of global variables that would otherwise have to be passed through long and complex call chains. It defines a Namespace object named "Globals" that contains the attributes: - root - the root directory under which "models" and "outputs" can be found - initfile - path to the initialization file - try_patchmatch - option to globally disable loading of 'patchmatch' module - always_use_cpu - force use of CPU even if GPU is available ''' import os import os.path as osp from argparse import Namespace from pathlib import Path from typing import Union Globals = Namespace() # Where to look for the initialization file and other key components Globals.initfile = 'invokeai.init' Globals.models_file = 'models.yaml' Globals.models_dir = 'models' Globals.config_dir = 'configs' Globals.autoscan_dir = 'weights' Globals.converted_ckpts_dir = 'converted_ckpts' # Set the default root directory. This can be overwritten by explicitly # passing the `--root ` argument on the command line. # logic is: # 1) use INVOKEAI_ROOT environment variable (no check for this being a valid directory) # 2) use VIRTUAL_ENV environment variable, with a check for initfile being there # 3) use ~/invokeai if os.environ.get('INVOKEAI_ROOT'): Globals.root = osp.abspath(os.environ.get('INVOKEAI_ROOT')) elif os.environ.get('VIRTUAL_ENV') and Path(os.environ.get('VIRTUAL_ENV'),'..',Globals.initfile).exists(): Globals.root = osp.abspath(osp.join(os.environ.get('VIRTUAL_ENV'), '..')) else: Globals.root = osp.abspath(osp.expanduser('~/invokeai')) # Try loading patchmatch Globals.try_patchmatch = True # Use CPU even if GPU is available (main use case is for debugging MPS issues) Globals.always_use_cpu = False # Whether the internet is reachable for dynamic downloads # The CLI will test connectivity at startup time. Globals.internet_available = True # Whether to disable xformers Globals.disable_xformers = False # Low-memory tradeoff for guidance calculations. Globals.sequential_guidance = False # whether we are forcing full precision Globals.full_precision = False # whether we should convert ckpt files into diffusers models on the fly Globals.ckpt_convert = False # logging tokenization everywhere Globals.log_tokenization = False def global_config_file()->Path: return Path(Globals.root, Globals.config_dir, Globals.models_file) def global_config_dir()->Path: return Path(Globals.root, Globals.config_dir) def global_models_dir()->Path: return Path(Globals.root, Globals.models_dir) def global_autoscan_dir()->Path: return Path(Globals.root, Globals.autoscan_dir) def global_converted_ckpts_dir()->Path: return Path(global_models_dir(), Globals.converted_ckpts_dir) def global_set_root(root_dir:Union[str,Path]): Globals.root = root_dir def global_cache_dir(subdir:Union[str,Path]='')->Path: ''' Returns Path to the model cache directory. If a subdirectory is provided, it will be appended to the end of the path, allowing for Hugging Face-style conventions. Currently, Hugging Face has moved all models into the "hub" subfolder, so for any pretrained HF model, use: global_cache_dir('hub') The legacy location for transformers used to be global_cache_dir('transformers') and global_cache_dir('diffusers') for diffusers. ''' home: str = os.getenv('HF_HOME') if home is None: home = os.getenv('XDG_CACHE_HOME') if home is not None: # Set `home` to $XDG_CACHE_HOME/huggingface, which is the default location mentioned in HuggingFace Hub Client Library. # See: https://huggingface.co/docs/huggingface_hub/main/en/package_reference/environment_variables#xdgcachehome home += os.sep + 'huggingface' if home is not None: return Path(home,subdir) else: return Path(Globals.root,'models',subdir)