from typing import Literal, Optional, Union from pydantic import BaseModel, Field from contextlib import ExitStack import re import torch from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationContext, InvocationConfig from .model import ClipField from ...backend.util.devices import torch_dtype from ...backend.stable_diffusion.diffusion import InvokeAIDiffuserComponent from ...backend.model_management import BaseModelType, ModelType, SubModelType from ...backend.model_management.lora import ModelPatcher from compel import Compel from compel.prompt_parser import ( Blend, CrossAttentionControlSubstitute, FlattenedPrompt, Fragment, Conjunction, ) class ConditioningField(BaseModel): conditioning_name: Optional[str] = Field(default=None, description="The name of conditioning data") class Config: schema_extra = {"required": ["conditioning_name"]} class CompelOutput(BaseInvocationOutput): """Compel parser output""" #fmt: off type: Literal["compel_output"] = "compel_output" conditioning: ConditioningField = Field(default=None, description="Conditioning") #fmt: on class CompelInvocation(BaseInvocation): """Parse prompt using compel package to conditioning.""" type: Literal["compel"] = "compel" prompt: str = Field(default="", description="Prompt") clip: ClipField = Field(None, description="Clip to use") # Schema customisation class Config(InvocationConfig): schema_extra = { "ui": { "title": "Prompt (Compel)", "tags": ["prompt", "compel"], "type_hints": { "model": "model" } }, } @torch.no_grad() def invoke(self, context: InvocationContext) -> CompelOutput: tokenizer_info = context.services.model_manager.get_model( **self.clip.tokenizer.dict(), ) text_encoder_info = context.services.model_manager.get_model( **self.clip.text_encoder.dict(), ) with tokenizer_info as orig_tokenizer,\ text_encoder_info as text_encoder: loras = [(context.services.model_manager.get_model(**lora.dict(exclude={"weight"})).context.model, lora.weight) for lora in self.clip.loras] ti_list = [] for trigger in re.findall(r"<[a-zA-Z0-9., _-]+>", self.prompt): name = trigger[1:-1] try: ti_list.append( context.services.model_manager.get_model( model_name=name, base_model=self.clip.text_encoder.base_model, model_type=ModelType.TextualInversion, ).context.model ) except Exception: #print(e) #import traceback #print(traceback.format_exc()) print(f"Warn: trigger: \"{trigger}\" not found") with ModelPatcher.apply_lora_text_encoder(text_encoder, loras),\ ModelPatcher.apply_ti(orig_tokenizer, text_encoder, ti_list) as (tokenizer, ti_manager): compel = Compel( tokenizer=tokenizer, text_encoder=text_encoder, textual_inversion_manager=ti_manager, dtype_for_device_getter=torch_dtype, truncate_long_prompts=True, # TODO: ) conjunction = Compel.parse_prompt_string(self.prompt) prompt: Union[FlattenedPrompt, Blend] = conjunction.prompts[0] if context.services.configuration.log_tokenization: log_tokenization_for_prompt_object(prompt, tokenizer) c, options = compel.build_conditioning_tensor_for_prompt_object(prompt) # TODO: long prompt support #if not self.truncate_long_prompts: # [c, uc] = compel.pad_conditioning_tensors_to_same_length([c, uc]) ec = InvokeAIDiffuserComponent.ExtraConditioningInfo( tokens_count_including_eos_bos=get_max_token_count(tokenizer, conjunction), cross_attention_control_args=options.get("cross_attention_control", None), ) conditioning_name = f"{context.graph_execution_state_id}_{self.id}_conditioning" # TODO: hacky but works ;D maybe rename latents somehow? context.services.latents.save(conditioning_name, (c, ec)) return CompelOutput( conditioning=ConditioningField( conditioning_name=conditioning_name, ), ) def get_max_token_count( tokenizer, prompt: Union[FlattenedPrompt, Blend, Conjunction], truncate_if_too_long=False ) -> int: if type(prompt) is Blend: blend: Blend = prompt return max( [ get_max_token_count(tokenizer, p, truncate_if_too_long) for p in blend.prompts ] ) elif type(prompt) is Conjunction: conjunction: Conjunction = prompt return sum( [ get_max_token_count(tokenizer, p, truncate_if_too_long) for p in conjunction.prompts ] ) else: return len( get_tokens_for_prompt_object(tokenizer, prompt, truncate_if_too_long) ) def get_tokens_for_prompt_object( tokenizer, parsed_prompt: FlattenedPrompt, truncate_if_too_long=True ) -> [str]: if type(parsed_prompt) is Blend: raise ValueError( "Blend is not supported here - you need to get tokens for each of its .children" ) text_fragments = [ x.text if type(x) is Fragment else ( " ".join([f.text for f in x.original]) if type(x) is CrossAttentionControlSubstitute else str(x) ) for x in parsed_prompt.children ] text = " ".join(text_fragments) tokens = tokenizer.tokenize(text) if truncate_if_too_long: max_tokens_length = tokenizer.model_max_length - 2 # typically 75 tokens = tokens[0:max_tokens_length] return tokens def log_tokenization_for_conjunction( c: Conjunction, tokenizer, display_label_prefix=None ): display_label_prefix = display_label_prefix or "" for i, p in enumerate(c.prompts): if len(c.prompts)>1: this_display_label_prefix = f"{display_label_prefix}(conjunction part {i + 1}, weight={c.weights[i]})" else: this_display_label_prefix = display_label_prefix log_tokenization_for_prompt_object( p, tokenizer, display_label_prefix=this_display_label_prefix ) def log_tokenization_for_prompt_object( p: Union[Blend, FlattenedPrompt], tokenizer, display_label_prefix=None ): display_label_prefix = display_label_prefix or "" if type(p) is Blend: blend: Blend = p for i, c in enumerate(blend.prompts): log_tokenization_for_prompt_object( c, tokenizer, display_label_prefix=f"{display_label_prefix}(blend part {i + 1}, weight={blend.weights[i]})", ) elif type(p) is FlattenedPrompt: flattened_prompt: FlattenedPrompt = p if flattened_prompt.wants_cross_attention_control: original_fragments = [] edited_fragments = [] for f in flattened_prompt.children: if type(f) is CrossAttentionControlSubstitute: original_fragments += f.original edited_fragments += f.edited else: original_fragments.append(f) edited_fragments.append(f) original_text = " ".join([x.text for x in original_fragments]) log_tokenization_for_text( original_text, tokenizer, display_label=f"{display_label_prefix}(.swap originals)", ) edited_text = " ".join([x.text for x in edited_fragments]) log_tokenization_for_text( edited_text, tokenizer, display_label=f"{display_label_prefix}(.swap replacements)", ) else: text = " ".join([x.text for x in flattened_prompt.children]) log_tokenization_for_text( text, tokenizer, display_label=display_label_prefix ) def log_tokenization_for_text(text, tokenizer, display_label=None, truncate_if_too_long=False): """shows how the prompt is tokenized # usually tokens have '' to indicate end-of-word, # but for readability it has been replaced with ' ' """ tokens = tokenizer.tokenize(text) tokenized = "" discarded = "" usedTokens = 0 totalTokens = len(tokens) for i in range(0, totalTokens): token = tokens[i].replace("", " ") # alternate color s = (usedTokens % 6) + 1 if truncate_if_too_long and i >= tokenizer.model_max_length: discarded = discarded + f"\x1b[0;3{s};40m{token}" else: tokenized = tokenized + f"\x1b[0;3{s};40m{token}" usedTokens += 1 if usedTokens > 0: print(f'\n>> [TOKENLOG] Tokens {display_label or ""} ({usedTokens}):') print(f"{tokenized}\x1b[0m") if discarded != "": print(f"\n>> [TOKENLOG] Tokens Discarded ({totalTokens - usedTokens}):") print(f"{discarded}\x1b[0m")