from typing import Literal, Optional, Union from pydantic import Field from invokeai.app.invocations.baseinvocation import ( BaseInvocation, BaseInvocationOutput, InvocationConfig, InvocationContext, ) from invokeai.app.invocations.controlnet_image_processors import ControlField from invokeai.app.invocations.model import LoRAModelField, MainModelField, VAEModelField from invokeai.app.util.model_exclude_null import BaseModelExcludeNull class LoRAMetadataField(BaseModelExcludeNull): """LoRA metadata for an image generated in InvokeAI.""" lora: LoRAModelField = Field(description="The LoRA model") weight: float = Field(description="The weight of the LoRA model") class CoreMetadata(BaseModelExcludeNull): """Core generation metadata for an image generated in InvokeAI.""" generation_mode: str = Field( description="The generation mode that output this image", ) positive_prompt: str = Field(description="The positive prompt parameter") negative_prompt: str = Field(description="The negative prompt parameter") width: int = Field(description="The width parameter") height: int = Field(description="The height parameter") seed: int = Field(description="The seed used for noise generation") rand_device: str = Field(description="The device used for random number generation") cfg_scale: float = Field(description="The classifier-free guidance scale parameter") steps: int = Field(description="The number of steps used for inference") scheduler: str = Field(description="The scheduler used for inference") clip_skip: int = Field( description="The number of skipped CLIP layers", ) model: MainModelField = Field(description="The main model used for inference") controlnets: list[ControlField] = Field(description="The ControlNets used for inference") loras: list[LoRAMetadataField] = Field(description="The LoRAs used for inference") vae: Union[VAEModelField, None] = Field( default=None, description="The VAE used for decoding, if the main model's default was not used", ) # Latents-to-Latents strength: Union[float, None] = Field( default=None, description="The strength used for latents-to-latents", ) init_image: Union[str, None] = Field(default=None, description="The name of the initial image") # SDXL positive_style_prompt: Union[str, None] = Field(default=None, description="The positive style prompt parameter") negative_style_prompt: Union[str, None] = Field(default=None, description="The negative style prompt parameter") # SDXL Refiner refiner_model: Union[MainModelField, None] = Field(default=None, description="The SDXL Refiner model used") refiner_cfg_scale: Union[float, None] = Field( default=None, description="The classifier-free guidance scale parameter used for the refiner", ) refiner_steps: Union[int, None] = Field(default=None, description="The number of steps used for the refiner") refiner_scheduler: Union[str, None] = Field(default=None, description="The scheduler used for the refiner") refiner_aesthetic_store: Union[float, None] = Field( default=None, description="The aesthetic score used for the refiner" ) refiner_start: Union[float, None] = Field(default=None, description="The start value used for refiner denoising") class ImageMetadata(BaseModelExcludeNull): """An image's generation metadata""" metadata: Optional[dict] = Field( default=None, description="The image's core metadata, if it was created in the Linear or Canvas UI", ) graph: Optional[dict] = Field(default=None, description="The graph that created the image") class MetadataAccumulatorOutput(BaseInvocationOutput): """The output of the MetadataAccumulator node""" type: Literal["metadata_accumulator_output"] = "metadata_accumulator_output" metadata: CoreMetadata = Field(description="The core metadata for the image") class MetadataAccumulatorInvocation(BaseInvocation): """Outputs a Core Metadata Object""" type: Literal["metadata_accumulator"] = "metadata_accumulator" generation_mode: str = Field( description="The generation mode that output this image", ) positive_prompt: str = Field(description="The positive prompt parameter") negative_prompt: str = Field(description="The negative prompt parameter") width: int = Field(description="The width parameter") height: int = Field(description="The height parameter") seed: int = Field(description="The seed used for noise generation") rand_device: str = Field(description="The device used for random number generation") cfg_scale: float = Field(description="The classifier-free guidance scale parameter") steps: int = Field(description="The number of steps used for inference") scheduler: str = Field(description="The scheduler used for inference") clip_skip: int = Field( description="The number of skipped CLIP layers", ) model: MainModelField = Field(description="The main model used for inference") controlnets: list[ControlField] = Field(description="The ControlNets used for inference") loras: list[LoRAMetadataField] = Field(description="The LoRAs used for inference") strength: Union[float, None] = Field( default=None, description="The strength used for latents-to-latents", ) init_image: Union[str, None] = Field(default=None, description="The name of the initial image") vae: Union[VAEModelField, None] = Field( default=None, description="The VAE used for decoding, if the main model's default was not used", ) # SDXL positive_style_prompt: Union[str, None] = Field(default=None, description="The positive style prompt parameter") negative_style_prompt: Union[str, None] = Field(default=None, description="The negative style prompt parameter") # SDXL Refiner refiner_model: Union[MainModelField, None] = Field(default=None, description="The SDXL Refiner model used") refiner_cfg_scale: Union[float, None] = Field( default=None, description="The classifier-free guidance scale parameter used for the refiner", ) refiner_steps: Union[int, None] = Field(default=None, description="The number of steps used for the refiner") refiner_scheduler: Union[str, None] = Field(default=None, description="The scheduler used for the refiner") refiner_aesthetic_store: Union[float, None] = Field( default=None, description="The aesthetic score used for the refiner" ) refiner_start: Union[float, None] = Field(default=None, description="The start value used for refiner denoising") class Config(InvocationConfig): schema_extra = { "ui": { "title": "Metadata Accumulator", "tags": ["image", "metadata", "generation"], }, } def invoke(self, context: InvocationContext) -> MetadataAccumulatorOutput: """Collects and outputs a CoreMetadata object""" return MetadataAccumulatorOutput(metadata=CoreMetadata(**self.dict()))