import torch from torch import nn import torch.nn.functional as F from einops import repeat from taming.modules.discriminator.model import ( NLayerDiscriminator, weights_init, ) from taming.modules.losses.lpips import LPIPS from taming.modules.losses.vqperceptual import hinge_d_loss, vanilla_d_loss def hinge_d_loss_with_exemplar_weights(logits_real, logits_fake, weights): assert weights.shape[0] == logits_real.shape[0] == logits_fake.shape[0] loss_real = torch.mean(F.relu(1.0 - logits_real), dim=[1, 2, 3]) loss_fake = torch.mean(F.relu(1.0 + logits_fake), dim=[1, 2, 3]) loss_real = (weights * loss_real).sum() / weights.sum() loss_fake = (weights * loss_fake).sum() / weights.sum() d_loss = 0.5 * (loss_real + loss_fake) return d_loss def adopt_weight(weight, global_step, threshold=0, value=0.0): if global_step < threshold: weight = value return weight def measure_perplexity(predicted_indices, n_embed): # src: https://github.com/karpathy/deep-vector-quantization/blob/main/model.py # eval cluster perplexity. when perplexity == num_embeddings then all clusters are used exactly equally encodings = ( F.one_hot(predicted_indices, n_embed).float().reshape(-1, n_embed) ) avg_probs = encodings.mean(0) perplexity = (-(avg_probs * torch.log(avg_probs + 1e-10)).sum()).exp() cluster_use = torch.sum(avg_probs > 0) return perplexity, cluster_use def l1(x, y): return torch.abs(x - y) def l2(x, y): return torch.pow((x - y), 2) class VQLPIPSWithDiscriminator(nn.Module): def __init__( self, disc_start, codebook_weight=1.0, pixelloss_weight=1.0, disc_num_layers=3, disc_in_channels=3, disc_factor=1.0, disc_weight=1.0, perceptual_weight=1.0, use_actnorm=False, disc_conditional=False, disc_ndf=64, disc_loss='hinge', n_classes=None, perceptual_loss='lpips', pixel_loss='l1', ): super().__init__() assert disc_loss in ['hinge', 'vanilla'] assert perceptual_loss in ['lpips', 'clips', 'dists'] assert pixel_loss in ['l1', 'l2'] self.codebook_weight = codebook_weight self.pixel_weight = pixelloss_weight if perceptual_loss == 'lpips': print(f'{self.__class__.__name__}: Running with LPIPS.') self.perceptual_loss = LPIPS().eval() else: raise ValueError( f'Unknown perceptual loss: >> {perceptual_loss} <<' ) self.perceptual_weight = perceptual_weight if pixel_loss == 'l1': self.pixel_loss = l1 else: self.pixel_loss = l2 self.discriminator = NLayerDiscriminator( input_nc=disc_in_channels, n_layers=disc_num_layers, use_actnorm=use_actnorm, ndf=disc_ndf, ).apply(weights_init) self.discriminator_iter_start = disc_start if disc_loss == 'hinge': self.disc_loss = hinge_d_loss elif disc_loss == 'vanilla': self.disc_loss = vanilla_d_loss else: raise ValueError(f"Unknown GAN loss '{disc_loss}'.") print(f'VQLPIPSWithDiscriminator running with {disc_loss} loss.') self.disc_factor = disc_factor self.discriminator_weight = disc_weight self.disc_conditional = disc_conditional self.n_classes = n_classes def calculate_adaptive_weight(self, nll_loss, g_loss, last_layer=None): if last_layer is not None: nll_grads = torch.autograd.grad( nll_loss, last_layer, retain_graph=True )[0] g_grads = torch.autograd.grad( g_loss, last_layer, retain_graph=True )[0] else: nll_grads = torch.autograd.grad( nll_loss, self.last_layer[0], retain_graph=True )[0] g_grads = torch.autograd.grad( g_loss, self.last_layer[0], retain_graph=True )[0] d_weight = torch.norm(nll_grads) / (torch.norm(g_grads) + 1e-4) d_weight = torch.clamp(d_weight, 0.0, 1e4).detach() d_weight = d_weight * self.discriminator_weight return d_weight def forward( self, codebook_loss, inputs, reconstructions, optimizer_idx, global_step, last_layer=None, cond=None, split='train', predicted_indices=None, ): if not exists(codebook_loss): codebook_loss = torch.tensor([0.0]).to(inputs.device) # rec_loss = torch.abs(inputs.contiguous() - reconstructions.contiguous()) rec_loss = self.pixel_loss( inputs.contiguous(), reconstructions.contiguous() ) if self.perceptual_weight > 0: p_loss = self.perceptual_loss( inputs.contiguous(), reconstructions.contiguous() ) rec_loss = rec_loss + self.perceptual_weight * p_loss else: p_loss = torch.tensor([0.0]) nll_loss = rec_loss # nll_loss = torch.sum(nll_loss) / nll_loss.shape[0] nll_loss = torch.mean(nll_loss) # now the GAN part if optimizer_idx == 0: # generator update if cond is None: assert not self.disc_conditional logits_fake = self.discriminator(reconstructions.contiguous()) else: assert self.disc_conditional logits_fake = self.discriminator( torch.cat((reconstructions.contiguous(), cond), dim=1) ) g_loss = -torch.mean(logits_fake) try: d_weight = self.calculate_adaptive_weight( nll_loss, g_loss, last_layer=last_layer ) except RuntimeError: assert not self.training d_weight = torch.tensor(0.0) disc_factor = adopt_weight( self.disc_factor, global_step, threshold=self.discriminator_iter_start, ) loss = ( nll_loss + d_weight * disc_factor * g_loss + self.codebook_weight * codebook_loss.mean() ) log = { '{}/total_loss'.format(split): loss.clone().detach().mean(), '{}/quant_loss'.format(split): codebook_loss.detach().mean(), '{}/nll_loss'.format(split): nll_loss.detach().mean(), '{}/rec_loss'.format(split): rec_loss.detach().mean(), '{}/p_loss'.format(split): p_loss.detach().mean(), '{}/d_weight'.format(split): d_weight.detach(), '{}/disc_factor'.format(split): torch.tensor(disc_factor), '{}/g_loss'.format(split): g_loss.detach().mean(), } if predicted_indices is not None: assert self.n_classes is not None with torch.no_grad(): perplexity, cluster_usage = measure_perplexity( predicted_indices, self.n_classes ) log[f'{split}/perplexity'] = perplexity log[f'{split}/cluster_usage'] = cluster_usage return loss, log if optimizer_idx == 1: # second pass for discriminator update if cond is None: logits_real = self.discriminator(inputs.contiguous().detach()) logits_fake = self.discriminator( reconstructions.contiguous().detach() ) else: logits_real = self.discriminator( torch.cat((inputs.contiguous().detach(), cond), dim=1) ) logits_fake = self.discriminator( torch.cat( (reconstructions.contiguous().detach(), cond), dim=1 ) ) disc_factor = adopt_weight( self.disc_factor, global_step, threshold=self.discriminator_iter_start, ) d_loss = disc_factor * self.disc_loss(logits_real, logits_fake) log = { '{}/disc_loss'.format(split): d_loss.clone().detach().mean(), '{}/logits_real'.format(split): logits_real.detach().mean(), '{}/logits_fake'.format(split): logits_fake.detach().mean(), } return d_loss, log