# copied from https://github.com/tencent-ailab/IP-Adapter (Apache License 2.0) # and modified as needed from typing import Optional, Union import torch from PIL import Image from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from invokeai.backend.ip_adapter.ip_attention_weights import IPAttentionWeights from .resampler import Resampler from ..raw_model import RawModel class ImageProjModel(torch.nn.Module): """Image Projection Model""" def __init__(self, cross_attention_dim=1024, clip_embeddings_dim=1024, clip_extra_context_tokens=4): super().__init__() self.cross_attention_dim = cross_attention_dim self.clip_extra_context_tokens = clip_extra_context_tokens self.proj = torch.nn.Linear(clip_embeddings_dim, self.clip_extra_context_tokens * cross_attention_dim) self.norm = torch.nn.LayerNorm(cross_attention_dim) @classmethod def from_state_dict(cls, state_dict: dict[torch.Tensor], clip_extra_context_tokens=4): """Initialize an ImageProjModel from a state_dict. The cross_attention_dim and clip_embeddings_dim are inferred from the shape of the tensors in the state_dict. Args: state_dict (dict[torch.Tensor]): The state_dict of model weights. clip_extra_context_tokens (int, optional): Defaults to 4. Returns: ImageProjModel """ cross_attention_dim = state_dict["norm.weight"].shape[0] clip_embeddings_dim = state_dict["proj.weight"].shape[-1] model = cls(cross_attention_dim, clip_embeddings_dim, clip_extra_context_tokens) model.load_state_dict(state_dict) return model def forward(self, image_embeds): embeds = image_embeds clip_extra_context_tokens = self.proj(embeds).reshape( -1, self.clip_extra_context_tokens, self.cross_attention_dim ) clip_extra_context_tokens = self.norm(clip_extra_context_tokens) return clip_extra_context_tokens class MLPProjModel(torch.nn.Module): """SD model with image prompt""" def __init__(self, cross_attention_dim=1024, clip_embeddings_dim=1024): super().__init__() self.proj = torch.nn.Sequential( torch.nn.Linear(clip_embeddings_dim, clip_embeddings_dim), torch.nn.GELU(), torch.nn.Linear(clip_embeddings_dim, cross_attention_dim), torch.nn.LayerNorm(cross_attention_dim), ) @classmethod def from_state_dict(cls, state_dict: dict[torch.Tensor]): """Initialize an MLPProjModel from a state_dict. The cross_attention_dim and clip_embeddings_dim are inferred from the shape of the tensors in the state_dict. Args: state_dict (dict[torch.Tensor]): The state_dict of model weights. Returns: MLPProjModel """ cross_attention_dim = state_dict["proj.3.weight"].shape[0] clip_embeddings_dim = state_dict["proj.0.weight"].shape[0] model = cls(cross_attention_dim, clip_embeddings_dim) model.load_state_dict(state_dict) return model def forward(self, image_embeds): clip_extra_context_tokens = self.proj(image_embeds) return clip_extra_context_tokens class IPAdapter(RawModel): """IP-Adapter: https://arxiv.org/pdf/2308.06721.pdf""" def __init__( self, state_dict: dict[str, torch.Tensor], device: torch.device, dtype: torch.dtype = torch.float16, num_tokens: int = 4, ): self.device = device self.dtype = dtype self._num_tokens = num_tokens self._clip_image_processor = CLIPImageProcessor() self._image_proj_model = self._init_image_proj_model(state_dict["image_proj"]) self.attn_weights = IPAttentionWeights.from_state_dict(state_dict["ip_adapter"]).to( self.device, dtype=self.dtype ) def to(self, device: torch.device, dtype: Optional[torch.dtype] = None): self.device = device if dtype is not None: self.dtype = dtype self._image_proj_model.to(device=self.device, dtype=self.dtype) self.attn_weights.to(device=self.device, dtype=self.dtype) def calc_size(self): # workaround for circular import from invokeai.backend.model_manager.load.model_util import calc_model_size_by_data return calc_model_size_by_data(self._image_proj_model) + calc_model_size_by_data(self.attn_weights) def _init_image_proj_model(self, state_dict): return ImageProjModel.from_state_dict(state_dict, self._num_tokens).to(self.device, dtype=self.dtype) @torch.inference_mode() def get_image_embeds(self, pil_image, image_encoder: CLIPVisionModelWithProjection): if isinstance(pil_image, Image.Image): pil_image = [pil_image] clip_image = self._clip_image_processor(images=pil_image, return_tensors="pt").pixel_values clip_image_embeds = image_encoder(clip_image.to(self.device, dtype=self.dtype)).image_embeds image_prompt_embeds = self._image_proj_model(clip_image_embeds) uncond_image_prompt_embeds = self._image_proj_model(torch.zeros_like(clip_image_embeds)) return image_prompt_embeds, uncond_image_prompt_embeds class IPAdapterPlus(IPAdapter): """IP-Adapter with fine-grained features""" def _init_image_proj_model(self, state_dict): return Resampler.from_state_dict( state_dict=state_dict, depth=4, dim_head=64, heads=12, num_queries=self._num_tokens, ff_mult=4, ).to(self.device, dtype=self.dtype) @torch.inference_mode() def get_image_embeds(self, pil_image, image_encoder: CLIPVisionModelWithProjection): if isinstance(pil_image, Image.Image): pil_image = [pil_image] clip_image = self._clip_image_processor(images=pil_image, return_tensors="pt").pixel_values clip_image = clip_image.to(self.device, dtype=self.dtype) clip_image_embeds = image_encoder(clip_image, output_hidden_states=True).hidden_states[-2] image_prompt_embeds = self._image_proj_model(clip_image_embeds) uncond_clip_image_embeds = image_encoder(torch.zeros_like(clip_image), output_hidden_states=True).hidden_states[ -2 ] uncond_image_prompt_embeds = self._image_proj_model(uncond_clip_image_embeds) return image_prompt_embeds, uncond_image_prompt_embeds class IPAdapterFull(IPAdapterPlus): """IP-Adapter Plus with full features.""" def _init_image_proj_model(self, state_dict: dict[torch.Tensor]): return MLPProjModel.from_state_dict(state_dict).to(self.device, dtype=self.dtype) class IPAdapterPlusXL(IPAdapterPlus): """IP-Adapter Plus for SDXL.""" def _init_image_proj_model(self, state_dict): return Resampler.from_state_dict( state_dict=state_dict, depth=4, dim_head=64, heads=20, num_queries=self._num_tokens, ff_mult=4, ).to(self.device, dtype=self.dtype) def build_ip_adapter( ip_adapter_ckpt_path: str, device: torch.device, dtype: torch.dtype = torch.float16 ) -> Union[IPAdapter, IPAdapterPlus]: state_dict = torch.load(ip_adapter_ckpt_path, map_location="cpu") if "proj.weight" in state_dict["image_proj"]: # IPAdapter (with ImageProjModel). return IPAdapter(state_dict, device=device, dtype=dtype) elif "proj_in.weight" in state_dict["image_proj"]: # IPAdaterPlus or IPAdapterPlusXL (with Resampler). cross_attention_dim = state_dict["ip_adapter"]["1.to_k_ip.weight"].shape[-1] if cross_attention_dim == 768: # SD1 IP-Adapter Plus return IPAdapterPlus(state_dict, device=device, dtype=dtype) elif cross_attention_dim == 2048: # SDXL IP-Adapter Plus return IPAdapterPlusXL(state_dict, device=device, dtype=dtype) else: raise Exception(f"Unsupported IP-Adapter Plus cross-attention dimension: {cross_attention_dim}.") elif "proj.0.weight" in state_dict["image_proj"]: # IPAdapterFull (with MLPProjModel). return IPAdapterFull(state_dict, device=device, dtype=dtype) else: raise ValueError(f"'{ip_adapter_ckpt_path}' has an unrecognized IP-Adapter model architecture.")