"""Utilities for parsing model files, used mostly by probe.py""" import json import torch from typing import Union from pathlib import Path from picklescan.scanner import scan_file_path def _fast_safetensors_reader(path: str): checkpoint = {} device = torch.device("meta") with open(path, "rb") as f: definition_len = int.from_bytes(f.read(8), "little") definition_json = f.read(definition_len) definition = json.loads(definition_json) if "__metadata__" in definition and definition["__metadata__"].get("format", "pt") not in { "pt", "torch", "pytorch", }: raise Exception("Supported only pytorch safetensors files") definition.pop("__metadata__", None) for key, info in definition.items(): dtype = { "I8": torch.int8, "I16": torch.int16, "I32": torch.int32, "I64": torch.int64, "F16": torch.float16, "F32": torch.float32, "F64": torch.float64, }[info["dtype"]] checkpoint[key] = torch.empty(info["shape"], dtype=dtype, device=device) return checkpoint def read_checkpoint_meta(path: Union[str, Path], scan: bool = False): if str(path).endswith(".safetensors"): try: checkpoint = _fast_safetensors_reader(path) except Exception: # TODO: create issue for support "meta"? checkpoint = safetensors.torch.load_file(path, device="cpu") else: if scan: scan_result = scan_file_path(path) if scan_result.infected_files != 0: raise Exception(f'The model file "{path}" is potentially infected by malware. Aborting import.') checkpoint = torch.load(path, map_location=torch.device("meta")) return checkpoint def lora_token_vector_length(checkpoint: dict) -> int: """ Given a checkpoint in memory, return the lora token vector length :param checkpoint: The checkpoint """ def _get_shape_1(key: str, tensor, checkpoint) -> int: lora_token_vector_length = None if "." not in key: return lora_token_vector_length # wrong key format model_key, lora_key = key.split(".", 1) # check lora/locon if lora_key == "lora_down.weight": lora_token_vector_length = tensor.shape[1] # check loha (don't worry about hada_t1/hada_t2 as it used only in 4d shapes) elif lora_key in ["hada_w1_b", "hada_w2_b"]: lora_token_vector_length = tensor.shape[1] # check lokr (don't worry about lokr_t2 as it used only in 4d shapes) elif "lokr_" in lora_key: if model_key + ".lokr_w1" in checkpoint: _lokr_w1 = checkpoint[model_key + ".lokr_w1"] elif model_key + "lokr_w1_b" in checkpoint: _lokr_w1 = checkpoint[model_key + ".lokr_w1_b"] else: return lora_token_vector_length # unknown format if model_key + ".lokr_w2" in checkpoint: _lokr_w2 = checkpoint[model_key + ".lokr_w2"] elif model_key + "lokr_w2_b" in checkpoint: _lokr_w2 = checkpoint[model_key + ".lokr_w2_b"] else: return lora_token_vector_length # unknown format lora_token_vector_length = _lokr_w1.shape[1] * _lokr_w2.shape[1] elif lora_key == "diff": lora_token_vector_length = tensor.shape[1] # ia3 can be detected only by shape[0] in text encoder elif lora_key == "weight" and "lora_unet_" not in model_key: lora_token_vector_length = tensor.shape[0] return lora_token_vector_length lora_token_vector_length = None lora_te1_length = None lora_te2_length = None for key, tensor in checkpoint.items(): if key.startswith("lora_unet_") and ("_attn2_to_k." in key or "_attn2_to_v." in key): lora_token_vector_length = _get_shape_1(key, tensor, checkpoint) elif key.startswith("lora_unet_") and ( "time_emb_proj.lora_down" in key ): # recognizes format at https://civitai.com/models/224641 lora_token_vector_length = _get_shape_1(key, tensor, checkpoint) elif key.startswith("lora_te") and "_self_attn_" in key: tmp_length = _get_shape_1(key, tensor, checkpoint) if key.startswith("lora_te_"): lora_token_vector_length = tmp_length elif key.startswith("lora_te1_"): lora_te1_length = tmp_length elif key.startswith("lora_te2_"): lora_te2_length = tmp_length if lora_te1_length is not None and lora_te2_length is not None: lora_token_vector_length = lora_te1_length + lora_te2_length if lora_token_vector_length is not None: break return lora_token_vector_length