# test that if the model's device changes while the lora is applied, the weights can still be restored # test that LoRA patching works on both CPU and CUDA import pytest import torch from invokeai.backend.model_patcher import ModelPatcher from invokeai.backend.lora import LoRALayer, LoRAModelRaw @pytest.mark.parametrize( "device", [ "cpu", pytest.param("cuda", marks=pytest.mark.skipif(not torch.cuda.is_available(), reason="requires CUDA device")), ], ) @torch.no_grad() def test_apply_lora(device): """Test the basic behavior of ModelPatcher.apply_lora(...). Check that patching and unpatching produce the correct result, and that model/LoRA tensors are moved between devices as expected. """ linear_in_features = 4 linear_out_features = 8 lora_dim = 2 model = torch.nn.ModuleDict( {"linear_layer_1": torch.nn.Linear(linear_in_features, linear_out_features, device=device, dtype=torch.float16)} ) lora_layers = { "linear_layer_1": LoRALayer( layer_key="linear_layer_1", values={ "lora_down.weight": torch.ones((lora_dim, linear_in_features), device="cpu", dtype=torch.float16), "lora_up.weight": torch.ones((linear_out_features, lora_dim), device="cpu", dtype=torch.float16), }, ) } lora = LoRAModelRaw("lora_name", lora_layers) lora_weight = 0.5 orig_linear_weight = model["linear_layer_1"].weight.data.detach().clone() expected_patched_linear_weight = orig_linear_weight + (lora_dim * lora_weight) with ModelPatcher.apply_lora(model, [(lora, lora_weight)], prefix=""): # After patching, all LoRA layer weights should have been moved back to the cpu. assert lora_layers["linear_layer_1"].up.device.type == "cpu" assert lora_layers["linear_layer_1"].down.device.type == "cpu" # After patching, the patched model should still be on its original device. assert model["linear_layer_1"].weight.data.device.type == device torch.testing.assert_close(model["linear_layer_1"].weight.data, expected_patched_linear_weight) # After unpatching, the original model weights should have been restored on the original device. assert model["linear_layer_1"].weight.data.device.type == device torch.testing.assert_close(model["linear_layer_1"].weight.data, orig_linear_weight) @pytest.mark.skipif(not torch.cuda.is_available(), reason="requires CUDA device") @torch.no_grad() def test_apply_lora_change_device(): """Test that if LoRA patching is applied on the CPU, and then the patched model is moved to the GPU, unpatching still behaves correctly. """ linear_in_features = 4 linear_out_features = 8 lora_dim = 2 # Initialize the model on the CPU. model = torch.nn.ModuleDict( {"linear_layer_1": torch.nn.Linear(linear_in_features, linear_out_features, device="cpu", dtype=torch.float16)} ) lora_layers = { "linear_layer_1": LoRALayer( layer_key="linear_layer_1", values={ "lora_down.weight": torch.ones((lora_dim, linear_in_features), device="cpu", dtype=torch.float16), "lora_up.weight": torch.ones((linear_out_features, lora_dim), device="cpu", dtype=torch.float16), }, ) } lora = LoRAModelRaw("lora_name", lora_layers) orig_linear_weight = model["linear_layer_1"].weight.data.detach().clone() with ModelPatcher.apply_lora(model, [(lora, 0.5)], prefix=""): # After patching, all LoRA layer weights should have been moved back to the cpu. assert lora_layers["linear_layer_1"].up.device.type == "cpu" assert lora_layers["linear_layer_1"].down.device.type == "cpu" # After patching, the patched model should still be on the CPU. assert model["linear_layer_1"].weight.data.device.type == "cpu" # Move the model to the GPU. assert model.to("cuda") # After unpatching, the original model weights should have been restored on the GPU. assert model["linear_layer_1"].weight.data.device.type == "cuda" torch.testing.assert_close(model["linear_layer_1"].weight.data, orig_linear_weight, check_device=False)