#!/usr/bin/env python # Copyright (c) 2022 Lincoln D. Stein (https://github.com/lstein) # Before running stable-diffusion on an internet-isolated machine, # run this script from one with internet connectivity. The # two machines must share a common .cache directory. # # Coauthor: Kevin Turner http://github.com/keturn # import sys print("Loading Python libraries...\n",file=sys.stderr) import argparse import io import os import shutil import textwrap import traceback import warnings import yaml from argparse import Namespace from pathlib import Path from shutil import get_terminal_size from typing import get_type_hints from urllib import request import npyscreen import transformers from diffusers import AutoencoderKL from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from huggingface_hub import HfFolder from huggingface_hub import login as hf_hub_login from omegaconf import OmegaConf from tqdm import tqdm from transformers import ( AutoProcessor, CLIPSegForImageSegmentation, CLIPTextModel, CLIPTokenizer, AutoFeatureExtractor, BertTokenizerFast, ) import invokeai.configs as configs from invokeai.app.services.config import ( InvokeAIAppConfig, ) from invokeai.backend.util.logging import InvokeAILogger from invokeai.frontend.install.model_install import addModelsForm, process_and_execute from invokeai.frontend.install.widgets import ( CenteredButtonPress, IntTitleSlider, set_min_terminal_size, CyclingForm, MIN_COLS, MIN_LINES, ) from invokeai.backend.install.legacy_arg_parsing import legacy_parser from invokeai.backend.install.model_install_backend import ( default_dataset, download_from_hf, hf_download_with_resume, recommended_datasets, UserSelections, ) from invokeai.backend.model_management.model_probe import ( ModelProbe, ModelType, BaseModelType, SchedulerPredictionType ) warnings.filterwarnings("ignore") transformers.logging.set_verbosity_error() # --------------------------globals----------------------- config = InvokeAIAppConfig.get_config() Model_dir = "models" Weights_dir = "ldm/stable-diffusion-v1/" Default_config_file = config.model_conf_path SD_Configs = config.legacy_conf_path PRECISION_CHOICES = ['auto','float16','float32','autocast'] INIT_FILE_PREAMBLE = """# InvokeAI initialization file # This is the InvokeAI initialization file, which contains command-line default values. # Feel free to edit. If anything goes wrong, you can re-initialize this file by deleting # or renaming it and then running invokeai-configure again. """ logger=InvokeAILogger.getLogger() # -------------------------------------------- def postscript(errors: None): if not any(errors): message = f""" ** INVOKEAI INSTALLATION SUCCESSFUL ** If you installed manually from source or with 'pip install': activate the virtual environment then run one of the following commands to start InvokeAI. Web UI: invokeai-web Command-line client: invokeai If you installed using an installation script, run: {config.root_path}/invoke.{"bat" if sys.platform == "win32" else "sh"} Add the '--help' argument to see all of the command-line switches available for use. """ else: message = "\n** There were errors during installation. It is possible some of the models were not fully downloaded.\n" for err in errors: message += f"\t - {err}\n" message += "Please check the logs above and correct any issues." print(message) # --------------------------------------------- def yes_or_no(prompt: str, default_yes=True): default = "y" if default_yes else "n" response = input(f"{prompt} [{default}] ") or default if default_yes: return response[0] not in ("n", "N") else: return response[0] in ("y", "Y") # --------------------------------------------- def HfLogin(access_token) -> str: """ Helper for logging in to Huggingface The stdout capture is needed to hide the irrelevant "git credential helper" warning """ capture = io.StringIO() sys.stdout = capture try: hf_hub_login(token=access_token, add_to_git_credential=False) sys.stdout = sys.__stdout__ except Exception as exc: sys.stdout = sys.__stdout__ print(exc) raise exc # ------------------------------------- class ProgressBar: def __init__(self, model_name="file"): self.pbar = None self.name = model_name def __call__(self, block_num, block_size, total_size): if not self.pbar: self.pbar = tqdm( desc=self.name, initial=0, unit="iB", unit_scale=True, unit_divisor=1000, total=total_size, ) self.pbar.update(block_size) # --------------------------------------------- def download_with_progress_bar(model_url: str, model_dest: str, label: str = "the"): try: logger.info(f"Installing {label} model file {model_url}...") if not os.path.exists(model_dest): os.makedirs(os.path.dirname(model_dest), exist_ok=True) request.urlretrieve( model_url, model_dest, ProgressBar(os.path.basename(model_dest)) ) logger.info("...downloaded successfully") else: logger.info("...exists") except Exception: logger.info("...download failed") logger.info(f"Error downloading {label} model") print(traceback.format_exc(), file=sys.stderr) def download_conversion_models(): target_dir = config.root_path / 'models/core/convert' kwargs = dict() # for future use try: logger.info('Downloading core tokenizers and text encoders') # bert with warnings.catch_warnings(): warnings.filterwarnings("ignore", category=DeprecationWarning) bert = BertTokenizerFast.from_pretrained("bert-base-uncased", **kwargs) bert.save_pretrained(target_dir / 'bert-base-uncased', safe_serialization=True) # sd-1 repo_id = 'openai/clip-vit-large-patch14' download_from_hf(CLIPTokenizer, repo_id, target_dir / 'clip-vit-large-patch14') download_from_hf(CLIPTextModel, repo_id, target_dir / 'clip-vit-large-patch14') # sd-2 repo_id = "stabilityai/stable-diffusion-2" pipeline = CLIPTokenizer.from_pretrained(repo_id, subfolder="tokenizer", **kwargs) pipeline.save_pretrained(target_dir / 'stable-diffusion-2-clip' / 'tokenizer', safe_serialization=True) pipeline = CLIPTextModel.from_pretrained(repo_id, subfolder="text_encoder", **kwargs) pipeline.save_pretrained(target_dir / 'stable-diffusion-2-clip' / 'text_encoder', safe_serialization=True) # VAE logger.info('Downloading stable diffusion VAE') vae = AutoencoderKL.from_pretrained('stabilityai/sd-vae-ft-mse', **kwargs) vae.save_pretrained(target_dir / 'sd-vae-ft-mse', safe_serialization=True) # safety checking logger.info('Downloading safety checker') repo_id = "CompVis/stable-diffusion-safety-checker" pipeline = AutoFeatureExtractor.from_pretrained(repo_id,**kwargs) pipeline.save_pretrained(target_dir / 'stable-diffusion-safety-checker', safe_serialization=True) pipeline = StableDiffusionSafetyChecker.from_pretrained(repo_id,**kwargs) pipeline.save_pretrained(target_dir / 'stable-diffusion-safety-checker', safe_serialization=True) except KeyboardInterrupt: raise except Exception as e: logger.error(str(e)) # --------------------------------------------- def download_realesrgan(): logger.info("Installing models from RealESRGAN...") model_url = "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth" wdn_model_url = "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-wdn-x4v3.pth" model_dest = config.root_path / "models/core/upscaling/realesrgan/realesr-general-x4v3.pth" wdn_model_dest = config.root_path / "models/core/upscaling/realesrgan/realesr-general-wdn-x4v3.pth" download_with_progress_bar(model_url, str(model_dest), "RealESRGAN") download_with_progress_bar(wdn_model_url, str(wdn_model_dest), "RealESRGANwdn") def download_gfpgan(): logger.info("Installing GFPGAN models...") for model in ( [ "https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth", "./models/core/face_restoration/gfpgan/GFPGANv1.4.pth", ], [ "https://github.com/xinntao/facexlib/releases/download/v0.1.0/detection_Resnet50_Final.pth", "./models/core/face_restoration/gfpgan/weights/detection_Resnet50_Final.pth", ], [ "https://github.com/xinntao/facexlib/releases/download/v0.2.2/parsing_parsenet.pth", "./models/core/face_restoration/gfpgan/weights/parsing_parsenet.pth", ], ): model_url, model_dest = model[0], config.root_path / model[1] download_with_progress_bar(model_url, str(model_dest), "GFPGAN weights") # --------------------------------------------- def download_codeformer(): logger.info("Installing CodeFormer model file...") model_url = ( "https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/codeformer.pth" ) model_dest = config.root_path / "models/core/face_restoration/codeformer/codeformer.pth" download_with_progress_bar(model_url, str(model_dest), "CodeFormer") # --------------------------------------------- def download_clipseg(): logger.info("Installing clipseg model for text-based masking...") CLIPSEG_MODEL = "CIDAS/clipseg-rd64-refined" try: download_from_hf(AutoProcessor, CLIPSEG_MODEL, config.root_path / 'models/core/misc/clipseg') download_from_hf(CLIPSegForImageSegmentation, CLIPSEG_MODEL,'models/core/misc/clipseg') except Exception: logger.info("Error installing clipseg model:") logger.info(traceback.format_exc()) def download_support_models(): download_realesrgan() download_gfpgan() download_codeformer() download_clipseg() download_conversion_models() # ------------------------------------- def get_root(root: str = None) -> str: if root: return root elif os.environ.get("INVOKEAI_ROOT"): return os.environ.get("INVOKEAI_ROOT") else: return str(config.root_path) # ------------------------------------- class editOptsForm(CyclingForm, npyscreen.FormMultiPage): # for responsive resizing - disabled # FIX_MINIMUM_SIZE_WHEN_CREATED = False def create(self): program_opts = self.parentApp.program_opts old_opts = self.parentApp.invokeai_opts first_time = not (config.root_path / 'invokeai.yaml').exists() access_token = HfFolder.get_token() window_width, window_height = get_terminal_size() label = """Configure startup settings. You can come back and change these later. Use ctrl-N and ctrl-P to move to the ext and

revious fields. Use cursor arrows to make a checkbox selection, and space to toggle. """ for i in textwrap.wrap(label,width=window_width-6): self.add_widget_intelligent( npyscreen.FixedText, value=i, editable=False, color="CONTROL", ) self.nextrely += 1 self.add_widget_intelligent( npyscreen.TitleFixedText, name="== BASIC OPTIONS ==", begin_entry_at=0, editable=False, color="CONTROL", scroll_exit=True, ) self.nextrely -= 1 self.add_widget_intelligent( npyscreen.FixedText, value="Select an output directory for images:", editable=False, color="CONTROL", ) self.outdir = self.add_widget_intelligent( npyscreen.TitleFilename, name="( autocompletes, ctrl-N advances):", value=str(default_output_dir()), select_dir=True, must_exist=False, use_two_lines=False, labelColor="GOOD", begin_entry_at=40, scroll_exit=True, ) self.nextrely += 1 self.add_widget_intelligent( npyscreen.FixedText, value="Activate the NSFW checker to blur images showing potential sexual imagery:", editable=False, color="CONTROL", ) self.nsfw_checker = self.add_widget_intelligent( npyscreen.Checkbox, name="NSFW checker", value=old_opts.nsfw_checker, relx=5, scroll_exit=True, ) self.nextrely += 1 label = """If you have an account at HuggingFace you may optionally paste your access token here to allow InvokeAI to download restricted styles & subjects from the "Concept Library". See https://huggingface.co/settings/tokens. """ for line in textwrap.wrap(label,width=window_width-6): self.add_widget_intelligent( npyscreen.FixedText, value=line, editable=False, color="CONTROL", ) self.hf_token = self.add_widget_intelligent( npyscreen.TitlePassword, name="Access Token (ctrl-shift-V pastes):", value=access_token, begin_entry_at=42, use_two_lines=False, scroll_exit=True, ) self.nextrely += 1 self.add_widget_intelligent( npyscreen.TitleFixedText, name="== ADVANCED OPTIONS ==", begin_entry_at=0, editable=False, color="CONTROL", scroll_exit=True, ) self.nextrely -= 1 self.add_widget_intelligent( npyscreen.TitleFixedText, name="GPU Management", begin_entry_at=0, editable=False, color="CONTROL", scroll_exit=True, ) self.nextrely -= 1 self.free_gpu_mem = self.add_widget_intelligent( npyscreen.Checkbox, name="Free GPU memory after each generation", value=old_opts.free_gpu_mem, relx=5, scroll_exit=True, ) self.xformers_enabled = self.add_widget_intelligent( npyscreen.Checkbox, name="Enable xformers support if available", value=old_opts.xformers_enabled, relx=5, scroll_exit=True, ) self.always_use_cpu = self.add_widget_intelligent( npyscreen.Checkbox, name="Force CPU to be used on GPU systems", value=old_opts.always_use_cpu, relx=5, scroll_exit=True, ) precision = old_opts.precision or ( "float32" if program_opts.full_precision else "auto" ) self.precision = self.add_widget_intelligent( npyscreen.TitleSelectOne, name="Precision", values=PRECISION_CHOICES, value=PRECISION_CHOICES.index(precision), begin_entry_at=3, max_height=len(PRECISION_CHOICES) + 1, scroll_exit=True, ) self.max_loaded_models = self.add_widget_intelligent( IntTitleSlider, name="Number of models to cache in CPU memory (each will use 2-4 GB!)", value=old_opts.max_loaded_models, out_of=10, lowest=1, begin_entry_at=4, scroll_exit=True, ) self.nextrely += 1 self.add_widget_intelligent( npyscreen.FixedText, value="Directories containing textual inversion, controlnet and LoRA models ( autocompletes, ctrl-N advances):", editable=False, color="CONTROL", ) self.embedding_dir = self.add_widget_intelligent( npyscreen.TitleFilename, name=" Textual Inversion Embeddings:", value=str(default_embedding_dir()), select_dir=True, must_exist=False, use_two_lines=False, labelColor="GOOD", begin_entry_at=32, scroll_exit=True, ) self.lora_dir = self.add_widget_intelligent( npyscreen.TitleFilename, name=" LoRA and LyCORIS:", value=str(default_lora_dir()), select_dir=True, must_exist=False, use_two_lines=False, labelColor="GOOD", begin_entry_at=32, scroll_exit=True, ) self.controlnet_dir = self.add_widget_intelligent( npyscreen.TitleFilename, name=" ControlNets:", value=str(default_controlnet_dir()), select_dir=True, must_exist=False, use_two_lines=False, labelColor="GOOD", begin_entry_at=32, scroll_exit=True, ) self.nextrely += 1 self.add_widget_intelligent( npyscreen.TitleFixedText, name="== LICENSE ==", begin_entry_at=0, editable=False, color="CONTROL", scroll_exit=True, ) self.nextrely -= 1 label = """BY DOWNLOADING THE STABLE DIFFUSION WEIGHT FILES, YOU AGREE TO HAVE READ AND ACCEPTED THE CREATIVEML RESPONSIBLE AI LICENSE LOCATED AT https://huggingface.co/spaces/CompVis/stable-diffusion-license """ for i in textwrap.wrap(label,width=window_width-6): self.add_widget_intelligent( npyscreen.FixedText, value=i, editable=False, color="CONTROL", ) self.license_acceptance = self.add_widget_intelligent( npyscreen.Checkbox, name="I accept the CreativeML Responsible AI License", value=not first_time, relx=2, scroll_exit=True, ) self.nextrely += 1 label = ( "DONE" if program_opts.skip_sd_weights or program_opts.default_only else "NEXT" ) self.ok_button = self.add_widget_intelligent( CenteredButtonPress, name=label, relx=(window_width - len(label)) // 2, rely=-3, when_pressed_function=self.on_ok, ) def on_ok(self): options = self.marshall_arguments() if self.validate_field_values(options): self.parentApp.new_opts = options if hasattr(self.parentApp, "model_select"): self.parentApp.setNextForm("MODELS") else: self.parentApp.setNextForm(None) self.editing = False else: self.editing = True def validate_field_values(self, opt: Namespace) -> bool: bad_fields = [] if not opt.license_acceptance: bad_fields.append( "Please accept the license terms before proceeding to model downloads" ) if not Path(opt.outdir).parent.exists(): bad_fields.append( f"The output directory does not seem to be valid. Please check that {str(Path(opt.outdir).parent)} is an existing directory." ) if not Path(opt.embedding_dir).parent.exists(): bad_fields.append( f"The embedding directory does not seem to be valid. Please check that {str(Path(opt.embedding_dir).parent)} is an existing directory." ) if len(bad_fields) > 0: message = "The following problems were detected and must be corrected:\n" for problem in bad_fields: message += f"* {problem}\n" npyscreen.notify_confirm(message) return False else: return True def marshall_arguments(self): new_opts = Namespace() for attr in [ "outdir", "nsfw_checker", "free_gpu_mem", "max_loaded_models", "xformers_enabled", "always_use_cpu", "embedding_dir", "lora_dir", "controlnet_dir", ]: setattr(new_opts, attr, getattr(self, attr).value) new_opts.hf_token = self.hf_token.value new_opts.license_acceptance = self.license_acceptance.value new_opts.precision = PRECISION_CHOICES[self.precision.value[0]] # widget library workaround to make max_loaded_models an int rather than a float new_opts.max_loaded_models = int(new_opts.max_loaded_models) return new_opts class EditOptApplication(npyscreen.NPSAppManaged): def __init__(self, program_opts: Namespace, invokeai_opts: Namespace): super().__init__() self.program_opts = program_opts self.invokeai_opts = invokeai_opts self.user_cancelled = False self.user_selections = default_user_selections(program_opts) def onStart(self): npyscreen.setTheme(npyscreen.Themes.DefaultTheme) self.options = self.addForm( "MAIN", editOptsForm, name="InvokeAI Startup Options", cycle_widgets=True, ) if not (self.program_opts.skip_sd_weights or self.program_opts.default_only): self.model_select = self.addForm( "MODELS", addModelsForm, name="Install Stable Diffusion Models", multipage=True, cycle_widgets=True, ) def new_opts(self): return self.options.marshall_arguments() def edit_opts(program_opts: Namespace, invokeai_opts: Namespace) -> argparse.Namespace: editApp = EditOptApplication(program_opts, invokeai_opts) editApp.run() return editApp.new_opts() def default_startup_options(init_file: Path) -> Namespace: opts = InvokeAIAppConfig.get_config() if not init_file.exists(): opts.nsfw_checker = True return opts def default_user_selections(program_opts: Namespace) -> UserSelections: return UserSelections( install_models=default_dataset() if program_opts.default_only else recommended_datasets() if program_opts.yes_to_all else dict(), purge_deleted_models=False, scan_directory=None, autoscan_on_startup=None, ) # ------------------------------------- def initialize_rootdir(root: Path, yes_to_all: bool = False): logger.info("** INITIALIZING INVOKEAI RUNTIME DIRECTORY **") for name in ( "models", "databases", "text-inversion-output", "text-inversion-training-data", "configs" ): os.makedirs(os.path.join(root, name), exist_ok=True) configs_src = Path(configs.__path__[0]) configs_dest = root / "configs" if not os.path.samefile(configs_src, configs_dest): shutil.copytree(configs_src, configs_dest, dirs_exist_ok=True) dest = root / 'models' for model_base in [BaseModelType.StableDiffusion1,BaseModelType.StableDiffusion2]: for model_type in [ModelType.Pipeline, ModelType.Vae, ModelType.Lora, ModelType.ControlNet,ModelType.TextualInversion]: path = dest / model_base.value / model_type.value path.mkdir(parents=True, exist_ok=True) path = dest / 'core' path.mkdir(parents=True, exist_ok=True) with open(root / 'configs' / 'models.yaml','w') as yaml_file: yaml_file.write(yaml.dump({'__metadata__': {'version':'3.0.0'} } ) ) # ------------------------------------- def run_console_ui( program_opts: Namespace, initfile: Path = None ) -> (Namespace, Namespace): # parse_args() will read from init file if present invokeai_opts = default_startup_options(initfile) invokeai_opts.root = program_opts.root # The third argument is needed in the Windows 11 environment to # launch a console window running this program. set_min_terminal_size(MIN_COLS, MIN_LINES,'invokeai-configure') # the install-models application spawns a subprocess to install # models, and will crash unless this is set before running. import torch torch.multiprocessing.set_start_method("spawn") editApp = EditOptApplication(program_opts, invokeai_opts) editApp.run() if editApp.user_cancelled: return (None, None) else: return (editApp.new_opts, editApp.user_selections) # ------------------------------------- def write_opts(opts: Namespace, init_file: Path): """ Update the invokeai.yaml file with values from current settings. """ # this will load current settings new_config = InvokeAIAppConfig.get_config() new_config.root = config.root for key,value in opts.__dict__.items(): if hasattr(new_config,key): setattr(new_config,key,value) with open(init_file,'w', encoding='utf-8') as file: file.write(new_config.to_yaml()) # ------------------------------------- def default_output_dir() -> Path: return config.root_path / "outputs" # ------------------------------------- def default_embedding_dir() -> Path: return config.root_path / "embeddings" # ------------------------------------- def default_lora_dir() -> Path: return config.root_path / "loras" # ------------------------------------- def default_controlnet_dir() -> Path: return config.root_path / "controlnets" # ------------------------------------- def write_default_options(program_opts: Namespace, initfile: Path): opt = default_startup_options(initfile) write_opts(opt, initfile) # ------------------------------------- # Here we bring in # the legacy Args object in order to parse # the old init file and write out the new # yaml format. def migrate_init_file(legacy_format:Path): old = legacy_parser.parse_args([f'@{str(legacy_format)}']) new = InvokeAIAppConfig.get_config() fields = list(get_type_hints(InvokeAIAppConfig).keys()) for attr in fields: if hasattr(old,attr): setattr(new,attr,getattr(old,attr)) # a few places where the field names have changed and we have to # manually add in the new names/values new.nsfw_checker = old.safety_checker new.xformers_enabled = old.xformers new.conf_path = old.conf new.embedding_dir = old.embedding_path invokeai_yaml = legacy_format.parent / 'invokeai.yaml' with open(invokeai_yaml,"w", encoding="utf-8") as outfile: outfile.write(new.to_yaml()) legacy_format.replace(legacy_format.parent / 'invokeai.init.old') # ------------------------------------- def main(): parser = argparse.ArgumentParser(description="InvokeAI model downloader") parser.add_argument( "--skip-sd-weights", dest="skip_sd_weights", action=argparse.BooleanOptionalAction, default=False, help="skip downloading the large Stable Diffusion weight files", ) parser.add_argument( "--skip-support-models", dest="skip_support_models", action=argparse.BooleanOptionalAction, default=False, help="skip downloading the support models", ) parser.add_argument( "--full-precision", dest="full_precision", action=argparse.BooleanOptionalAction, type=bool, default=False, help="use 32-bit weights instead of faster 16-bit weights", ) parser.add_argument( "--yes", "-y", dest="yes_to_all", action="store_true", help='answer "yes" to all prompts', ) parser.add_argument( "--default_only", action="store_true", help="when --yes specified, only install the default model", ) parser.add_argument( "--config_file", "-c", dest="config_file", type=str, default=None, help="path to configuration file to create", ) parser.add_argument( "--root_dir", dest="root", type=str, default=None, help="path to root of install directory", ) opt = parser.parse_args() invoke_args = [] if opt.root: invoke_args.extend(['--root',opt.root]) if opt.full_precision: invoke_args.extend(['--precision','float32']) config.parse_args(invoke_args) logger = InvokeAILogger().getLogger(config=config) errors = set() try: models_to_download = default_user_selections(opt) # We check for to see if the runtime directory is correctly initialized. old_init_file = config.root_path / 'invokeai.init' new_init_file = config.root_path / 'invokeai.yaml' if old_init_file.exists() and not new_init_file.exists(): logger.info('** Migrating invokeai.init to invokeai.yaml') migrate_init_file(old_init_file) # Load new init file into config config.parse_args(argv=[],conf=OmegaConf.load(new_init_file)) if not config.model_conf_path.exists(): initialize_rootdir(config.root_path, opt.yes_to_all) if opt.yes_to_all: write_default_options(opt, new_init_file) init_options = Namespace( precision="float32" if opt.full_precision else "float16" ) else: init_options, models_to_download = run_console_ui(opt, new_init_file) if init_options: write_opts(init_options, new_init_file) else: logger.info( '\n** CANCELLED AT USER\'S REQUEST. USE THE "invoke.sh" LAUNCHER TO RUN LATER **\n' ) sys.exit(0) if opt.skip_support_models: logger.info("SKIPPING SUPPORT MODEL DOWNLOADS PER USER REQUEST") else: logger.info("CHECKING/UPDATING SUPPORT MODELS") download_support_models() if opt.skip_sd_weights: logger.info("\n** SKIPPING DIFFUSION WEIGHTS DOWNLOAD PER USER REQUEST **") elif models_to_download: logger.info("\n** DOWNLOADING DIFFUSION WEIGHTS **") process_and_execute(opt, models_to_download) postscript(errors=errors) if not opt.yes_to_all: input('Press any key to continue...') except KeyboardInterrupt: print("\nGoodbye! Come back soon.") # ------------------------------------- if __name__ == "__main__": main()