''' Migrate the models directory and models.yaml file from an existing InvokeAI 2.3 installation to 3.0.0. ''' import io import os import argparse import shutil import yaml import transformers import diffusers import warnings from pathlib import Path from omegaconf import OmegaConf from diffusers import StableDiffusionPipeline, AutoencoderKL from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from transformers import ( CLIPTextModel, CLIPTokenizer, AutoFeatureExtractor, BertTokenizerFast, ) import invokeai.backend.util.logging as logger from invokeai.backend.model_management import ModelManager from invokeai.backend.model_management.model_probe import ( ModelProbe, ModelType, BaseModelType, SchedulerPredictionType, ModelVariantInfo ) warnings.filterwarnings("ignore") transformers.logging.set_verbosity_error() diffusers.logging.set_verbosity_error() model_names = set() def unique_name(name,info)->str: done = False key = ModelManager.create_key(name,info.base_type,info.model_type) unique_name = key counter = 1 while not done: if unique_name in model_names: unique_name = f'{key}-{counter:0>2d}' counter += 1 else: done = True model_names.add(unique_name) name,_,_ = ModelManager.parse_key(unique_name) return name def create_directory_structure(dest: Path): for model_base in [BaseModelType.StableDiffusion1,BaseModelType.StableDiffusion2]: for model_type in [ModelType.Pipeline, ModelType.Vae, ModelType.Lora, ModelType.ControlNet,ModelType.TextualInversion]: path = dest / model_base.value / model_type.value path.mkdir(parents=True, exist_ok=True) path = dest / 'core' path.mkdir(parents=True, exist_ok=True) def copy_file(src:Path,dest:Path): logger.info(f'Copying {str(src)} to {str(dest)}') try: shutil.copy(src, dest) except Exception as e: logger.error(f'COPY FAILED: {str(e)}') def copy_dir(src:Path,dest:Path): logger.info(f'Copying {str(src)} to {str(dest)}') try: shutil.copytree(src, dest) except Exception as e: logger.error(f'COPY FAILED: {str(e)}') def migrate_models(src_dir: Path, dest_dir: Path): for root, dirs, files in os.walk(src_dir): for f in files: # hack - don't copy raw learned_embeds.bin, let them # be copied as part of a tree copy operation if f == 'learned_embeds.bin': continue try: model = Path(root,f) info = ModelProbe().heuristic_probe(model) if not info: continue dest = Path(dest_dir, info.base_type.value, info.model_type.value, f) copy_file(model, dest) except KeyboardInterrupt: raise except Exception as e: logger.error(str(e)) for d in dirs: try: model = Path(root,d) info = ModelProbe().heuristic_probe(model) if not info: continue dest = Path(dest_dir, info.base_type.value, info.model_type.value, model.name) copy_dir(model, dest) except KeyboardInterrupt: raise except Exception as e: logger.error(str(e)) def migrate_support_models(dest_directory: Path): if Path('./models/clipseg').exists(): copy_dir(Path('./models/clipseg'),dest_directory / 'core/misc/clipseg') if Path('./models/realesrgan').exists(): copy_dir(Path('./models/realesrgan'),dest_directory / 'core/upscaling/realesrgan') for d in ['codeformer','gfpgan']: path = Path('./models',d) if path.exists(): copy_dir(path,dest_directory / f'core/face_restoration/{d}') def migrate_conversion_models(dest_directory: Path): # These are needed for the conversion script kwargs = dict( cache_dir = Path('./models/hub'), #local_files_only = True ) try: logger.info('Migrating core tokenizers and text encoders') target_dir = dest_directory / 'core' / 'convert' # bert bert = BertTokenizerFast.from_pretrained("bert-base-uncased", **kwargs) bert.save_pretrained(target_dir / 'bert-base-uncased', safe_serialization=True) # sd-1 repo_id = 'openai/clip-vit-large-patch14' pipeline = CLIPTokenizer.from_pretrained(repo_id, **kwargs) pipeline.save_pretrained(target_dir / 'clip-vit-large-patch14' / 'tokenizer', safe_serialization=True) pipeline = CLIPTextModel.from_pretrained(repo_id, **kwargs) pipeline.save_pretrained(target_dir / 'clip-vit-large-patch14' / 'text_encoder', safe_serialization=True) # sd-2 repo_id = "stabilityai/stable-diffusion-2" pipeline = CLIPTokenizer.from_pretrained(repo_id, subfolder="tokenizer", **kwargs) pipeline.save_pretrained(target_dir / 'stable-diffusion-2-clip' / 'tokenizer', safe_serialization=True) pipeline = CLIPTextModel.from_pretrained(repo_id, subfolder="text_encoder", **kwargs) pipeline.save_pretrained(target_dir / 'stable-diffusion-2-clip' / 'text_encoder', safe_serialization=True) # VAE logger.info('Migrating stable diffusion VAE') vae = AutoencoderKL.from_pretrained('stabilityai/sd-vae-ft-mse', **kwargs) vae.save_pretrained(target_dir / 'sd-vae-ft-mse', safe_serialization=True) # safety checking logger.info('Migrating safety checker') repo_id = "CompVis/stable-diffusion-safety-checker" pipeline = AutoFeatureExtractor.from_pretrained(repo_id,**kwargs) pipeline.save_pretrained(target_dir / 'stable-diffusion-safety-checker', safe_serialization=True) pipeline = StableDiffusionSafetyChecker.from_pretrained(repo_id,**kwargs) pipeline.save_pretrained(target_dir / 'stable-diffusion-safety-checker', safe_serialization=True) except KeyboardInterrupt: raise except Exception as e: logger.error(str(e)) def migrate_tuning_models(dest: Path): for subdir in ['embeddings','loras','controlnets']: src = Path('.',subdir) if not src.is_dir(): logger.info(f'{subdir} directory not found; skipping') continue logger.info(f'Scanning {subdir}') migrate_models(src, dest) def write_yaml(model_name: str, path:Path, info:ModelVariantInfo, dest_yaml: io.TextIOBase): name = unique_name(model_name, info) stanza = { f'{info.base_type.value}/{info.model_type.value}/{name}': { 'name': model_name, 'path': str(path), 'description': f'diffusers model {model_name}', 'format': 'diffusers', 'image_size': info.image_size, 'base': info.base_type.value, 'variant': info.variant_type.value, 'prediction_type': info.prediction_type.value, 'upcast_attention': info.prediction_type == SchedulerPredictionType.VPrediction } } dest_yaml.write(yaml.dump(stanza)) dest_yaml.flush() def migrate_converted(dest_dir: Path, dest_yaml: io.TextIOBase): for sub_dir in [Path('./models/converted_ckpts'),Path('./models/optimize-ckpts')]: for model in sub_dir.glob('*'): if not model.is_dir(): continue info = ModelProbe().heuristic_probe(model) if not info: continue dest = Path(dest_dir, info.base_type.value, info.model_type.value, model.name) try: copy_dir(model,dest) rel_path = Path('models',dest.relative_to(dest_dir)) write_yaml(model.name,path=rel_path,info=info, dest_yaml=dest_yaml) except KeyboardInterrupt: raise except Exception as e: logger.warning(f'Could not migrate the converted diffusers {model.name}: {str(e)}. Skipping.') def migrate_pipelines(dest_dir: Path, dest_yaml: io.TextIOBase): cache = Path('./models/hub') kwargs = dict( cache_dir = cache, safety_checker = None, # local_files_only = True, ) for model in cache.glob('models--*'): if len(list(model.glob('snapshots/**/model_index.json')))==0: continue _,owner,repo_name=model.name.split('--') repo_id = f'{owner}/{repo_name}' revisions = [x.name for x in model.glob('refs/*')] # if an fp16 is available we use that revision = 'fp16' if len(revisions) > 1 and 'fp16' in revisions else revisions[0] logger.info(f'Migrating {repo_id}, revision {revision}') try: pipeline = StableDiffusionPipeline.from_pretrained( repo_id, revision=revision, **kwargs) info = ModelProbe().heuristic_probe(pipeline) if not info: continue dest = Path(dest_dir, info.base_type.value, info.model_type.value, f'{repo_name}') pipeline.save_pretrained(dest, safe_serialization=True) rel_path = Path('models',dest.relative_to(dest_dir)) write_yaml(repo_name, path=rel_path, info=info, dest_yaml=dest_yaml) except KeyboardInterrupt: raise except Exception as e: logger.warning(f'Could not load the "{revision}" version of {repo_id}. Skipping.') def migrate_checkpoints(dest_dir: Path, dest_yaml: io.TextIOBase): # find any checkpoints referred to in old models.yaml conf = OmegaConf.load('./configs/models.yaml') orig_models_dir = Path.cwd() / 'models' for model_name, stanza in conf.items(): if stanza.get('format') and stanza['format'] == 'ckpt': try: logger.info(f'Migrating checkpoint model {model_name}') weights = orig_models_dir.parent / stanza['weights'] config = stanza['config'] info = ModelProbe().heuristic_probe(weights) if not info: continue # uh oh, weights is in the old models directory - move it into the new one if Path(weights).is_relative_to(orig_models_dir): dest = Path(dest_dir, info.base_type.value, info.model_type.value,weights.name) copy_file(weights,dest) weights = Path('models', info.base_type.value, info.model_type.value,weights.name) model_name = unique_name(model_name, info) stanza = { f'{info.base_type.value}/{info.model_type.value}/{model_name}': { 'name': model_name, 'path': str(weights), 'description': f'checkpoint model {model_name}', 'format': 'checkpoint', 'image_size': info.image_size, 'base': info.base_type.value, 'variant': info.variant_type.value, 'config': config } } print(yaml.dump(stanza),file=dest_yaml,end="") dest_yaml.flush() except KeyboardInterrupt: raise except Exception as e: logger.error(str(e)) def main(): parser = argparse.ArgumentParser(description="Model directory migrator") parser.add_argument('root_directory', help='Root directory (containing "models", "embeddings", "controlnets" and "loras")' ) parser.add_argument('--dest-directory', default='./models-3.0', help='Destination for new models directory', ) parser.add_argument('--dest-yaml', default='./models.yaml-3.0', help='Destination for new models.yaml file', ) args = parser.parse_args() root_directory = Path(args.root_directory) assert root_directory.is_dir(), f"{root_directory} is not a valid directory" assert (root_directory / 'models').is_dir(), f"{root_directory} does not contain a 'models' subdirectory" dest_directory = Path(args.dest_directory).resolve() dest_yaml = Path(args.dest_yaml).resolve() os.chdir(root_directory) with open(dest_yaml,'w') as yaml_file: yaml_file.write(yaml.dump({'__metadata__': {'version':'3.0.0'} } ) ) create_directory_structure(dest_directory) migrate_support_models(dest_directory) migrate_conversion_models(dest_directory) migrate_tuning_models(dest_directory) migrate_converted(dest_directory,yaml_file) migrate_pipelines(dest_directory,yaml_file) migrate_checkpoints(dest_directory,yaml_file) if __name__ == '__main__': main()