# Copyright (c) 2024 The InvokeAI Development Team """Various utility functions needed by the loader and caching system.""" import json import logging from pathlib import Path from typing import Optional import torch from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.schedulers.scheduling_utils import SchedulerMixin from transformers import CLIPTokenizer from invokeai.backend.ip_adapter.ip_adapter import IPAdapter from invokeai.backend.lora import LoRAModelRaw from invokeai.backend.model_manager.config import AnyModel from invokeai.backend.onnx.onnx_runtime import IAIOnnxRuntimeModel from invokeai.backend.textual_inversion import TextualInversionModelRaw def calc_model_size_by_data(logger: logging.Logger, model: AnyModel) -> int: """Get size of a model in memory in bytes.""" # TODO(ryand): We should create a CacheableModel interface for all models, and move the size calculations down to # the models themselves. if isinstance(model, DiffusionPipeline): return _calc_pipeline_by_data(model) elif isinstance(model, torch.nn.Module): return calc_module_size(model) elif isinstance(model, IAIOnnxRuntimeModel): return _calc_onnx_model_by_data(model) elif isinstance(model, SchedulerMixin): return 0 elif isinstance(model, CLIPTokenizer): # TODO(ryand): Accurately calculate the tokenizer's size. It's small enough that it shouldn't matter for now. return 0 elif isinstance(model, (TextualInversionModelRaw, IPAdapter, LoRAModelRaw)): return model.calc_size() else: # TODO(ryand): Promote this from a log to an exception once we are confident that we are handling all of the # supported model types. logger.warning( f"Failed to calculate model size for unexpected model type: {type(model)}. The model will be treated as " "having size 0." ) return 0 def _calc_pipeline_by_data(pipeline: DiffusionPipeline) -> int: res = 0 assert hasattr(pipeline, "components") for submodel_key in pipeline.components.keys(): submodel = getattr(pipeline, submodel_key) if submodel is not None and isinstance(submodel, torch.nn.Module): res += calc_module_size(submodel) return res def calc_module_size(model: torch.nn.Module) -> int: """Calculate the size (in bytes) of a torch.nn.Module.""" mem_params = sum([param.nelement() * param.element_size() for param in model.parameters()]) mem_bufs = sum([buf.nelement() * buf.element_size() for buf in model.buffers()]) mem: int = mem_params + mem_bufs # in bytes return mem def _calc_onnx_model_by_data(model: IAIOnnxRuntimeModel) -> int: tensor_size = model.tensors.size() * 2 # The session doubles this mem = tensor_size # in bytes return mem def calc_model_size_by_fs(model_path: Path, subfolder: Optional[str] = None, variant: Optional[str] = None) -> int: """Estimate the size of a model on disk in bytes.""" if model_path.is_file(): return model_path.stat().st_size if subfolder is not None: model_path = model_path / subfolder # this can happen when, for example, the safety checker is not downloaded. if not model_path.exists(): return 0 all_files = [f for f in model_path.iterdir() if (model_path / f).is_file()] fp16_files = {f for f in all_files if ".fp16." in f.name or ".fp16-" in f.name} bit8_files = {f for f in all_files if ".8bit." in f.name or ".8bit-" in f.name} other_files = set(all_files) - fp16_files - bit8_files if not variant: # ModelRepoVariant.DEFAULT evaluates to empty string for compatability with HF files = other_files elif variant == "fp16": files = fp16_files elif variant == "8bit": files = bit8_files else: raise NotImplementedError(f"Unknown variant: {variant}") # try read from index if exists index_postfix = ".index.json" if variant is not None: index_postfix = f".index.{variant}.json" for file in files: if not file.name.endswith(index_postfix): continue try: with open(model_path / file, "r") as f: index_data = json.loads(f.read()) return int(index_data["metadata"]["total_size"]) except Exception: pass # calculate files size if there is no index file formats = [ (".safetensors",), # safetensors (".bin",), # torch (".onnx", ".pb"), # onnx (".msgpack",), # flax (".ckpt",), # tf (".h5",), # tf2 ] for file_format in formats: model_files = [f for f in files if f.suffix in file_format] if len(model_files) == 0: continue model_size = 0 for model_file in model_files: file_stats = (model_path / model_file).stat() model_size += file_stats.st_size return model_size return 0 # scheduler/feature_extractor/tokenizer - models without loading to gpu