""" Manage a RAM cache of diffusion/transformer models for fast switching. They are moved between GPU VRAM and CPU RAM as necessary. If the cache grows larger than a preset maximum, then the least recently used model will be cleared and (re)loaded from disk when next needed. The cache returns context manager generators designed to load the model into the GPU within the context, and unload outside the context. Use like this: cache = ModelCache(max_models_cached=6) with cache.get_model('runwayml/stable-diffusion-1-5') as SD1, cache.get_model('stabilityai/stable-diffusion-2') as SD2: do_something_in_GPU(SD1,SD2) """ import contextlib import gc import hashlib import warnings from collections.abc import Generator from collections import Counter from enum import Enum from pathlib import Path from typing import Sequence, Union, Tuple, types import torch from diffusers import StableDiffusionPipeline, AutoencoderKL, SchedulerMixin, UNet2DConditionModel from diffusers import logging as diffusers_logging from diffusers.pipelines.stable_diffusion.safety_checker import \ StableDiffusionSafetyChecker from huggingface_hub import HfApi from picklescan.scanner import scan_file_path from pydantic import BaseModel from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer from transformers import logging as transformers_logging import invokeai.backend.util.logging as logger from ..globals import global_cache_dir from ..stable_diffusion import StableDiffusionGeneratorPipeline MAX_MODELS = 4 # This is the mapping from the stable diffusion submodel dict key to the class class SDModelType(Enum): diffusion_pipeline=StableDiffusionGeneratorPipeline # whole thing vae=AutoencoderKL # parts text_encoder=CLIPTextModel tokenizer=CLIPTokenizer unet=UNet2DConditionModel scheduler=SchedulerMixin safety_checker=StableDiffusionSafetyChecker feature_extractor=CLIPFeatureExtractor class ModelStatus(Enum): unknown='unknown' not_loaded='not loaded' in_ram='cached' in_vram='in gpu' active='locked in gpu' # The list of model classes we know how to fetch, for typechecking ModelClass = Union[tuple([x.value for x in SDModelType])] DiffusionClasses = (StableDiffusionGeneratorPipeline, AutoencoderKL, SchedulerMixin, UNet2DConditionModel) # Legacy information needed to load a legacy checkpoint file class LegacyInfo(BaseModel): config_file: Path vae_file: Path = None class UnsafeModelException(Exception): "Raised when a legacy model file fails the picklescan test" pass class UnscannableModelException(Exception): "Raised when picklescan is unable to scan a legacy model file" pass class ModelCache(object): def __init__( self, max_models: int=MAX_MODELS, execution_device: torch.device=torch.device('cuda'), storage_device: torch.device=torch.device('cpu'), precision: torch.dtype=torch.float16, sequential_offload: bool=False, lazy_offloading: bool=True, sha_chunksize: int = 16777216, logger: types.ModuleType = logger ): ''' :param max_models: Maximum number of models to cache in CPU RAM [4] :param execution_device: Torch device to load active model into [torch.device('cuda')] :param storage_device: Torch device to save inactive model in [torch.device('cpu')] :param precision: Precision for loaded models [torch.float16] :param lazy_offloading: Keep model in VRAM until another model needs to be loaded :param sequential_offload: Conserve VRAM by loading and unloading each stage of the pipeline sequentially :param sha_chunksize: Chunksize to use when calculating sha256 model hash ''' self.models: dict = dict() self.stack: Sequence = list() self.lazy_offloading = lazy_offloading self.sequential_offload: bool=sequential_offload self.precision: torch.dtype=precision self.max_models: int=max_models self.execution_device: torch.device=execution_device self.storage_device: torch.device=storage_device self.sha_chunksize=sha_chunksize self.logger = logger self.loaded_models: set = set() # set of model keys loaded in GPU self.locked_models: Counter = Counter() # set of model keys locked in GPU @contextlib.contextmanager def get_model( self, repo_id_or_path: Union[str,Path], model_type: SDModelType=SDModelType.diffusion_pipeline, subfolder: Path=None, submodel: SDModelType=None, revision: str=None, legacy_info: LegacyInfo=None, attach_model_part: Tuple[SDModelType, str] = (None,None), gpu_load: bool=True, )->Generator[ModelClass, None, None]: ''' Load and return a HuggingFace model wrapped in a context manager generator, with RAM caching. Use like this: cache = ModelCache() with cache.get_model('stabilityai/stable-diffusion-2') as SD2: do_something_with_the_model(SD2) You can fetch an individual part of a diffusers model by passing the submodel argument: vae_context = cache.get_model( 'stabilityai/sd-stable-diffusion-2', submodel=SDModelType.vae ) Vice versa, you can load and attach an external submodel to a diffusers model before returning it by passing the attach_submodel argument. This only works with diffusers models: pipeline_context = cache.get_model( 'runwayml/stable-diffusion-v1-5', attach_model_part=(SDModelType.vae,'stabilityai/sd-vae-ft-mse') ) The model will be locked into GPU VRAM for the duration of the context. :param repo_id_or_path: either the HuggingFace repo_id or a Path to a local model :param subfolder: name of a subfolder in which the model can be found, e.g. "vae" :param submodel: an SDModelType enum indicating the model part to return, e.g. SDModelType.vae :param attach_model_part: load and attach a diffusers model component. Pass a tuple of format (SDModelType,repo_id) :param revision: model revision :param model_class: class of model to return :param gpu_load: load the model into GPU [default True] :param legacy_info: a LegacyInfo object containing additional info needed to load a legacy ckpt ''' key = self._model_key( # internal unique identifier for the model repo_id_or_path, model_type.value, revision, subfolder ) if key in self.models: # cached - move to bottom of stack with contextlib.suppress(ValueError): self.stack.remove(key) self.stack.append(key) model = self.models[key] else: # not cached -load self._make_cache_room() model = self._load_model_from_storage( repo_id_or_path=repo_id_or_path, model_class=model_type.value, subfolder=subfolder, revision=revision, legacy_info=legacy_info, ) if model_type==SDModelType.diffusion_pipeline and attach_model_part[0]: self.attach_part(model,*attach_model_part) self.stack.append(key) # add to LRU cache self.models[key]=model # keep copy of model in dict if submodel: model = getattr(model, submodel.name) if gpu_load and hasattr(model,'to'): try: self.loaded_models.add(key) self.locked_models[key] += 1 if self.lazy_offloading: self._offload_unlocked_models() self.logger.debug(f'Loading {key} into {self.execution_device}') model.to(self.execution_device) # move into GPU self._print_cuda_stats() yield model finally: self.locked_models[key] -= 1 if not self.lazy_offloading: self._offload_unlocked_models() self._print_cuda_stats() else: # in the event that the caller wants the model in RAM, we # move it into CPU if it is in GPU and not locked if hasattr(model,'to') and (key in self.loaded_models and self.locked_models[key] == 0): model.to(self.storage_device) self.loaded_models.remove(key) yield model def attach_part(self, diffusers_model: StableDiffusionPipeline, part_type: SDModelType, part_id: str ): ''' Attach a diffusers model part to a diffusers model. This can be used to replace the VAE, tokenizer, textencoder, unet, etc. :param diffuser_model: The diffusers model to attach the part to. :param part_type: An SD ModelType indicating the part :param part_id: A HF repo_id for the part ''' part_key = part_type.name part_class = part_type.value part = self._load_diffusers_from_storage( part_id, model_class=part_class, ) part.to(diffusers_model.device) setattr(diffusers_model,part_key,part) self.logger.debug(f'Attached {part_key} {part_id}') def status(self, repo_id_or_path: Union[str,Path], model_type: SDModelType=SDModelType.diffusion_pipeline, revision: str=None, subfolder: Path=None, )->ModelStatus: key = self._model_key( repo_id_or_path, model_type.value, revision, subfolder) if key not in self.models: return ModelStatus.not_loaded if key in self.loaded_models: if self.locked_models[key] > 0: return ModelStatus.active else: return ModelStatus.in_vram else: return ModelStatus.in_ram def model_hash(self, repo_id_or_path: Union[str,Path], revision: str="main")->str: ''' Given the HF repo id or path to a model on disk, returns a unique hash. Works for legacy checkpoint files, HF models on disk, and HF repo IDs :param repo_id_or_path: repo_id string or Path to model file/directory on disk. :param revision: optional revision string (if fetching a HF repo_id) ''' revision = revision or "main" if self.is_legacy_ckpt(repo_id_or_path): return self._legacy_model_hash(repo_id_or_path) elif Path(repo_id_or_path).is_dir(): return self._local_model_hash(repo_id_or_path) else: return self._hf_commit_hash(repo_id_or_path,revision) def cache_size(self)->int: "Return the current number of models cached." return len(self.models) @classmethod def is_legacy_ckpt(cls, repo_id_or_path: Union[str,Path])->bool: ''' Return true if the indicated path is a legacy checkpoint :param repo_id_or_path: either the HuggingFace repo_id or a Path to a local model ''' path = Path(repo_id_or_path) return path.is_file() and path.suffix in [".ckpt",".safetensors"] @classmethod def scan_model(cls, model_name, checkpoint): """ Apply picklescanner to the indicated checkpoint and issue a warning and option to exit if an infected file is identified. """ # scan model logger.debug(f"Scanning Model: {model_name}") scan_result = scan_file_path(checkpoint) if scan_result.infected_files != 0: if scan_result.infected_files == 1: raise UnsafeModelException("The legacy model you are trying to load may contain malware. Aborting.") else: raise UnscannableModelException("InvokeAI was unable to scan the legacy model you requested. Aborting") else: logger.debug("Model scanned ok") @staticmethod def _model_key(path,model_class,revision,subfolder)->str: return ':'.join([str(path),model_class.__name__,str(revision or ''),str(subfolder or '')]) def _has_cuda(self)->bool: return self.execution_device.type == 'cuda' def _print_cuda_stats(self): vram = "%4.2fG" % (torch.cuda.memory_allocated() / 1e9) loaded_models = len(self.loaded_models) locked_models = len([x for x in self.locked_models if self.locked_models[x]>0]) logger.debug(f"Current VRAM usage: {vram}; locked_models/loaded_models = {locked_models}/{loaded_models}") def _make_cache_room(self): models_in_ram = len(self.models) while models_in_ram >= self.max_models: if least_recently_used_key := self.stack.pop(0): logger.debug(f'Maximum cache size reached: cache_size={models_in_ram}; unloading model {least_recently_used_key}') del self.models[least_recently_used_key] models_in_ram = len(self.models) gc.collect() def _offload_unlocked_models(self): to_offload = set() for key in self.loaded_models: if key not in self.locked_models or self.locked_models[key] == 0: self.logger.debug(f'Offloading {key} from {self.execution_device} into {self.storage_device}') to_offload.add(key) for key in to_offload: self.models[key].to(self.storage_device) self.loaded_models.remove(key) def _load_model_from_storage( self, repo_id_or_path: Union[str,Path], subfolder: Path=None, revision: str=None, model_class: ModelClass=StableDiffusionGeneratorPipeline, legacy_info: LegacyInfo=None, )->ModelClass: ''' Load and return a HuggingFace model. :param repo_id_or_path: either the HuggingFace repo_id or a Path to a local model :param subfolder: name of a subfolder in which the model can be found, e.g. "vae" :param revision: model revision :param model_class: class of model to return, defaults to StableDiffusionGeneratorPIpeline :param legacy_info: a LegacyInfo object containing additional info needed to load a legacy ckpt ''' if self.is_legacy_ckpt(repo_id_or_path): model = self._load_ckpt_from_storage(repo_id_or_path, legacy_info) else: model = self._load_diffusers_from_storage( repo_id_or_path, subfolder, revision, model_class, ) if self.sequential_offload and isinstance(model,StableDiffusionGeneratorPipeline): model.enable_offload_submodels(self.execution_device) return model def _load_diffusers_from_storage( self, repo_id_or_path: Union[str,Path], subfolder: Path=None, revision: str=None, model_class: ModelClass=StableDiffusionGeneratorPipeline, )->ModelClass: ''' Load and return a HuggingFace model using from_pretrained(). :param repo_id_or_path: either the HuggingFace repo_id or a Path to a local model :param subfolder: name of a subfolder in which the model can be found, e.g. "vae" :param revision: model revision :param model_class: class of model to return, defaults to StableDiffusionGeneratorPIpeline ''' self.logger.info(f'Loading model {repo_id_or_path}') revisions = [revision] if revision \ else ['fp16','main'] if self.precision==torch.float16 \ else ['main'] extra_args = {'precision': self.precision} \ if model_class in DiffusionClasses \ else {} # silence transformer and diffuser warnings with SilenceWarnings(): for rev in revisions: try: model = model_class.from_pretrained( repo_id_or_path, revision=rev, subfolder=subfolder or '.', cache_dir=global_cache_dir('hub'), **extra_args, ) self.logger.debug(f'Found revision {rev}') break except OSError: pass return model def _load_ckpt_from_storage(self, ckpt_path: Union[str,Path], legacy_info:LegacyInfo)->StableDiffusionGeneratorPipeline: ''' Load a legacy checkpoint, convert it, and return a StableDiffusionGeneratorPipeline. :param ckpt_path: string or Path pointing to the weights file (.ckpt or .safetensors) :param legacy_info: LegacyInfo object containing paths to legacy config file and alternate vae if required ''' assert legacy_info is not None # deferred loading to avoid circular import errors from .convert_ckpt_to_diffusers import load_pipeline_from_original_stable_diffusion_ckpt with SilenceWarnings(): pipeline = load_pipeline_from_original_stable_diffusion_ckpt( checkpoint_path=ckpt_path, original_config_file=legacy_info.config_file, vae_path=legacy_info.vae_file, return_generator_pipeline=True, precision=self.precision, ) return pipeline def _legacy_model_hash(self, checkpoint_path: Union[str,Path])->str: sha = hashlib.sha256() path = Path(checkpoint_path) assert path.is_file() hashpath = path.parent / f"{path.name}.sha256" if hashpath.exists() and path.stat().st_mtime <= hashpath.stat().st_mtime: with open(hashpath) as f: hash = f.read() return hash logger.debug(f'computing hash of model {path.name}') with open(path, "rb") as f: while chunk := f.read(self.sha_chunksize): sha.update(chunk) hash = sha.hexdigest() with open(hashpath, "w") as f: f.write(hash) return hash def _local_model_hash(self, model_path: Union[str,Path])->str: sha = hashlib.sha256() path = Path(model_path) hashpath = path / "checksum.sha256" if hashpath.exists() and path.stat().st_mtime <= hashpath.stat().st_mtime: with open(hashpath) as f: hash = f.read() return hash logger.debug(f'computing hash of model {path.name}') for file in list(path.rglob("*.ckpt")) \ + list(path.rglob("*.safetensors")) \ + list(path.rglob("*.pth")): with open(file, "rb") as f: while chunk := f.read(self.sha_chunksize): sha.update(chunk) hash = sha.hexdigest() with open(hashpath, "w") as f: f.write(hash) return hash def _hf_commit_hash(self, repo_id: str, revision: str='main')->str: api = HfApi() info = api.list_repo_refs( repo_id=repo_id, repo_type='model', ) desired_revisions = [branch for branch in info.branches if branch.name==revision] if not desired_revisions: raise KeyError(f"Revision '{revision}' not found in {repo_id}") return desired_revisions[0].target_commit class SilenceWarnings(object): def __init__(self): self.transformers_verbosity = transformers_logging.get_verbosity() self.diffusers_verbosity = diffusers_logging.get_verbosity() def __enter__(self): transformers_logging.set_verbosity_error() diffusers_logging.set_verbosity_error() warnings.simplefilter('ignore') def __exit__(self,type,value,traceback): transformers_logging.set_verbosity(self.transformers_verbosity) diffusers_logging.set_verbosity(self.diffusers_verbosity) warnings.simplefilter('default')