from __future__ import annotations import math from contextlib import nullcontext from dataclasses import dataclass from typing import Any, Callable, List, Optional, Union import einops import PIL.Image import psutil import torch import torchvision.transforms as T from diffusers.models import AutoencoderKL, UNet2DConditionModel from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipeline from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.schedulers.scheduling_utils import SchedulerMixin from diffusers.utils.import_utils import is_xformers_available from pydantic import Field from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer from invokeai.app.services.config.config_default import get_config from invokeai.backend.stable_diffusion.diffusion.conditioning_data import IPAdapterData, TextConditioningData from invokeai.backend.stable_diffusion.diffusion.shared_invokeai_diffusion import InvokeAIDiffuserComponent from invokeai.backend.stable_diffusion.diffusion.unet_attention_patcher import UNetAttentionPatcher, UNetIPAdapterData from invokeai.backend.util.attention import auto_detect_slice_size from invokeai.backend.util.devices import TorchDevice from invokeai.backend.util.hotfixes import ControlNetModel @dataclass class PipelineIntermediateState: step: int order: int total_steps: int timestep: int latents: torch.Tensor predicted_original: Optional[torch.Tensor] = None @dataclass class AddsMaskLatents: """Add the channels required for inpainting model input. The inpainting model takes the normal latent channels as input, _plus_ a one-channel mask and the latent encoding of the base image. This class assumes the same mask and base image should apply to all items in the batch. """ forward: Callable[[torch.Tensor, torch.Tensor, torch.Tensor], torch.Tensor] mask: torch.Tensor initial_image_latents: torch.Tensor def __call__( self, latents: torch.Tensor, t: torch.Tensor, text_embeddings: torch.Tensor, **kwargs, ) -> torch.Tensor: model_input = self.add_mask_channels(latents) return self.forward(model_input, t, text_embeddings, **kwargs) def add_mask_channels(self, latents): batch_size = latents.size(0) # duplicate mask and latents for each batch mask = einops.repeat(self.mask, "b c h w -> (repeat b) c h w", repeat=batch_size) image_latents = einops.repeat(self.initial_image_latents, "b c h w -> (repeat b) c h w", repeat=batch_size) # add mask and image as additional channels model_input, _ = einops.pack([latents, mask, image_latents], "b * h w") return model_input def are_like_tensors(a: torch.Tensor, b: object) -> bool: return isinstance(b, torch.Tensor) and (a.size() == b.size()) @dataclass class AddsMaskGuidance: mask: torch.Tensor mask_latents: torch.Tensor scheduler: SchedulerMixin noise: torch.Tensor gradient_mask: bool def __call__(self, latents: torch.Tensor, t: torch.Tensor) -> torch.Tensor: return self.apply_mask(latents, t) def apply_mask(self, latents: torch.Tensor, t: torch.Tensor) -> torch.Tensor: batch_size = latents.size(0) mask = einops.repeat(self.mask, "b c h w -> (repeat b) c h w", repeat=batch_size) if t.dim() == 0: # some schedulers expect t to be one-dimensional. # TODO: file diffusers bug about inconsistency? t = einops.repeat(t, "-> batch", batch=batch_size) # Noise shouldn't be re-randomized between steps here. The multistep schedulers # get very confused about what is happening from step to step when we do that. mask_latents = self.scheduler.add_noise(self.mask_latents, self.noise, t) # TODO: Do we need to also apply scheduler.scale_model_input? Or is add_noise appropriately scaled already? # mask_latents = self.scheduler.scale_model_input(mask_latents, t) mask_latents = einops.repeat(mask_latents, "b c h w -> (repeat b) c h w", repeat=batch_size) if self.gradient_mask: threshhold = (t.item()) / self.scheduler.config.num_train_timesteps mask_bool = mask > threshhold # I don't know when mask got inverted, but it did masked_input = torch.where(mask_bool, latents, mask_latents) else: masked_input = torch.lerp(mask_latents.to(dtype=latents.dtype), latents, mask.to(dtype=latents.dtype)) return masked_input def trim_to_multiple_of(*args, multiple_of=8): return tuple((x - x % multiple_of) for x in args) def image_resized_to_grid_as_tensor(image: PIL.Image.Image, normalize: bool = True, multiple_of=8) -> torch.FloatTensor: """ :param image: input image :param normalize: scale the range to [-1, 1] instead of [0, 1] :param multiple_of: resize the input so both dimensions are a multiple of this """ w, h = trim_to_multiple_of(*image.size, multiple_of=multiple_of) transformation = T.Compose( [ T.Resize((h, w), T.InterpolationMode.LANCZOS, antialias=True), T.ToTensor(), ] ) tensor = transformation(image) if normalize: tensor = tensor * 2.0 - 1.0 return tensor def is_inpainting_model(unet: UNet2DConditionModel): return unet.conv_in.in_channels == 9 @dataclass class ControlNetData: model: ControlNetModel = Field(default=None) image_tensor: torch.Tensor = Field(default=None) weight: Union[float, List[float]] = Field(default=1.0) begin_step_percent: float = Field(default=0.0) end_step_percent: float = Field(default=1.0) control_mode: str = Field(default="balanced") resize_mode: str = Field(default="just_resize") @dataclass class T2IAdapterData: """A structure containing the information required to apply conditioning from a single T2I-Adapter model.""" adapter_state: dict[torch.Tensor] = Field() weight: Union[float, list[float]] = Field(default=1.0) begin_step_percent: float = Field(default=0.0) end_step_percent: float = Field(default=1.0) class StableDiffusionGeneratorPipeline(StableDiffusionPipeline): r""" Pipeline for text-to-image generation using Stable Diffusion. This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) Implementation note: This class started as a refactored copy of diffusers.StableDiffusionPipeline. Hopefully future versions of diffusers provide access to more of these functions so that we don't need to duplicate them here: https://github.com/huggingface/diffusers/issues/551#issuecomment-1281508384 Args: vae ([`AutoencoderKL`]): Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. text_encoder ([`CLIPTextModel`]): Frozen text-encoder. Stable Diffusion uses the text portion of [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. tokenizer (`CLIPTokenizer`): Tokenizer of class [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents. scheduler ([`SchedulerMixin`]): A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. safety_checker ([`StableDiffusionSafetyChecker`]): Classification module that estimates whether generated images could be considered offensive or harmful. Please, refer to the [model card](https://huggingface.co/CompVis/stable-diffusion-v1-4) for details. feature_extractor ([`CLIPFeatureExtractor`]): Model that extracts features from generated images to be used as inputs for the `safety_checker`. """ def __init__( self, vae: AutoencoderKL, text_encoder: CLIPTextModel, tokenizer: CLIPTokenizer, unet: UNet2DConditionModel, scheduler: KarrasDiffusionSchedulers, safety_checker: Optional[StableDiffusionSafetyChecker], feature_extractor: Optional[CLIPFeatureExtractor], requires_safety_checker: bool = False, control_model: ControlNetModel = None, ): super().__init__( vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor, requires_safety_checker=requires_safety_checker, ) self.invokeai_diffuser = InvokeAIDiffuserComponent(self.unet, self._unet_forward) self.control_model = control_model self.use_ip_adapter = False def _adjust_memory_efficient_attention(self, latents: torch.Tensor): """ if xformers is available, use it, otherwise use sliced attention. """ config = get_config() if config.attention_type == "xformers": self.enable_xformers_memory_efficient_attention() return elif config.attention_type == "sliced": slice_size = config.attention_slice_size if slice_size == "auto": slice_size = auto_detect_slice_size(latents) elif slice_size == "balanced": slice_size = "auto" self.enable_attention_slicing(slice_size=slice_size) return elif config.attention_type == "normal": self.disable_attention_slicing() return elif config.attention_type == "torch-sdp": if hasattr(torch.nn.functional, "scaled_dot_product_attention"): # diffusers enables sdp automatically return else: raise Exception("torch-sdp attention slicing not available") # the remainder if this code is called when attention_type=='auto' if self.unet.device.type == "cuda": if is_xformers_available(): self.enable_xformers_memory_efficient_attention() return elif hasattr(torch.nn.functional, "scaled_dot_product_attention"): # diffusers enables sdp automatically return if self.unet.device.type == "cpu" or self.unet.device.type == "mps": mem_free = psutil.virtual_memory().free elif self.unet.device.type == "cuda": mem_free, _ = torch.cuda.mem_get_info(TorchDevice.normalize(self.unet.device)) else: raise ValueError(f"unrecognized device {self.unet.device}") # input tensor of [1, 4, h/8, w/8] # output tensor of [16, (h/8 * w/8), (h/8 * w/8)] bytes_per_element_needed_for_baddbmm_duplication = latents.element_size() + 4 max_size_required_for_baddbmm = ( 16 * latents.size(dim=2) * latents.size(dim=3) * latents.size(dim=2) * latents.size(dim=3) * bytes_per_element_needed_for_baddbmm_duplication ) if max_size_required_for_baddbmm > (mem_free * 3.0 / 4.0): # 3.3 / 4.0 is from old Invoke code self.enable_attention_slicing(slice_size="max") elif torch.backends.mps.is_available(): # diffusers recommends always enabling for mps self.enable_attention_slicing(slice_size="max") else: self.disable_attention_slicing() def to(self, torch_device: Optional[Union[str, torch.device]] = None, silence_dtype_warnings=False): raise Exception("Should not be called") def latents_from_embeddings( self, latents: torch.Tensor, scheduler_step_kwargs: dict[str, Any], conditioning_data: TextConditioningData, noise: Optional[torch.Tensor], seed: int, timesteps: torch.Tensor, init_timestep: torch.Tensor, callback: Callable[[PipelineIntermediateState], None], control_data: List[ControlNetData] = None, ip_adapter_data: Optional[list[IPAdapterData]] = None, t2i_adapter_data: Optional[list[T2IAdapterData]] = None, mask: Optional[torch.Tensor] = None, masked_latents: Optional[torch.Tensor] = None, gradient_mask: Optional[bool] = False, ) -> torch.Tensor: if init_timestep.shape[0] == 0: return latents orig_latents = latents.clone() batch_size = latents.shape[0] batched_t = init_timestep.expand(batch_size) if noise is not None: # latents = noise * self.scheduler.init_noise_sigma # it's like in t2l according to diffusers latents = self.scheduler.add_noise(latents, noise, batched_t) mask_guidance: AddsMaskGuidance | None = None if mask is not None: if is_inpainting_model(self.unet): if masked_latents is None: raise Exception("Source image required for inpaint mask when inpaint model used!") self.invokeai_diffuser.model_forward_callback = AddsMaskLatents( self._unet_forward, mask, masked_latents ) else: # if no noise provided, noisify unmasked area based on seed if noise is None: noise = torch.randn( orig_latents.shape, dtype=torch.float32, device="cpu", generator=torch.Generator(device="cpu").manual_seed(seed), ).to(device=orig_latents.device, dtype=orig_latents.dtype) mask_guidance = AddsMaskGuidance(mask, orig_latents, self.scheduler, noise, gradient_mask) try: latents = self.generate_latents_from_embeddings( latents, timesteps, conditioning_data, scheduler_step_kwargs=scheduler_step_kwargs, mask_guidance=mask_guidance, control_data=control_data, ip_adapter_data=ip_adapter_data, t2i_adapter_data=t2i_adapter_data, callback=callback, ) finally: self.invokeai_diffuser.model_forward_callback = self._unet_forward # restore unmasked part after the last step is completed # in-process masking happens before each step if mask is not None: if gradient_mask: latents = torch.where(mask > 0, latents, orig_latents) else: latents = torch.lerp( orig_latents, latents.to(dtype=orig_latents.dtype), mask.to(dtype=orig_latents.dtype) ) return latents def generate_latents_from_embeddings( self, latents: torch.Tensor, timesteps, conditioning_data: TextConditioningData, scheduler_step_kwargs: dict[str, Any], callback: Callable[[PipelineIntermediateState], None], mask_guidance: AddsMaskGuidance | None = None, control_data: List[ControlNetData] = None, ip_adapter_data: Optional[list[IPAdapterData]] = None, t2i_adapter_data: Optional[list[T2IAdapterData]] = None, ) -> torch.Tensor: self._adjust_memory_efficient_attention(latents) batch_size = latents.shape[0] if timesteps.shape[0] == 0: return latents use_ip_adapter = ip_adapter_data is not None use_regional_prompting = ( conditioning_data.cond_regions is not None or conditioning_data.uncond_regions is not None ) unet_attention_patcher = None self.use_ip_adapter = use_ip_adapter attn_ctx = nullcontext() if use_ip_adapter or use_regional_prompting: ip_adapters: Optional[List[UNetIPAdapterData]] = ( [{"ip_adapter": ipa.ip_adapter_model, "target_blocks": ipa.target_blocks} for ipa in ip_adapter_data] if use_ip_adapter else None ) unet_attention_patcher = UNetAttentionPatcher(ip_adapters) attn_ctx = unet_attention_patcher.apply_ip_adapter_attention(self.invokeai_diffuser.model) with attn_ctx: callback( PipelineIntermediateState( step=-1, order=self.scheduler.order, total_steps=len(timesteps), timestep=self.scheduler.config.num_train_timesteps, latents=latents, ) ) for i, t in enumerate(self.progress_bar(timesteps)): batched_t = t.expand(batch_size) step_output = self.step( batched_t, latents, conditioning_data, step_index=i, total_step_count=len(timesteps), scheduler_step_kwargs=scheduler_step_kwargs, mask_guidance=mask_guidance, control_data=control_data, ip_adapter_data=ip_adapter_data, t2i_adapter_data=t2i_adapter_data, ) latents = step_output.prev_sample predicted_original = getattr(step_output, "pred_original_sample", None) callback( PipelineIntermediateState( step=i, order=self.scheduler.order, total_steps=len(timesteps), timestep=int(t), latents=latents, predicted_original=predicted_original, ) ) return latents @torch.inference_mode() def step( self, t: torch.Tensor, latents: torch.Tensor, conditioning_data: TextConditioningData, step_index: int, total_step_count: int, scheduler_step_kwargs: dict[str, Any], mask_guidance: AddsMaskGuidance | None = None, control_data: List[ControlNetData] = None, ip_adapter_data: Optional[list[IPAdapterData]] = None, t2i_adapter_data: Optional[list[T2IAdapterData]] = None, ): # invokeai_diffuser has batched timesteps, but diffusers schedulers expect a single value timestep = t[0] if mask_guidance is not None: latents = mask_guidance(latents, timestep) # TODO: should this scaling happen here or inside self._unet_forward? # i.e. before or after passing it to InvokeAIDiffuserComponent latent_model_input = self.scheduler.scale_model_input(latents, timestep) # Handle ControlNet(s) down_block_additional_residuals = None mid_block_additional_residual = None if control_data is not None: down_block_additional_residuals, mid_block_additional_residual = self.invokeai_diffuser.do_controlnet_step( control_data=control_data, sample=latent_model_input, timestep=timestep, step_index=step_index, total_step_count=total_step_count, conditioning_data=conditioning_data, ) # Handle T2I-Adapter(s) down_intrablock_additional_residuals = None if t2i_adapter_data is not None: accum_adapter_state = None for single_t2i_adapter_data in t2i_adapter_data: # Determine the T2I-Adapter weights for the current denoising step. first_t2i_adapter_step = math.floor(single_t2i_adapter_data.begin_step_percent * total_step_count) last_t2i_adapter_step = math.ceil(single_t2i_adapter_data.end_step_percent * total_step_count) t2i_adapter_weight = ( single_t2i_adapter_data.weight[step_index] if isinstance(single_t2i_adapter_data.weight, list) else single_t2i_adapter_data.weight ) if step_index < first_t2i_adapter_step or step_index > last_t2i_adapter_step: # If the current step is outside of the T2I-Adapter's begin/end step range, then set its weight to 0 # so it has no effect. t2i_adapter_weight = 0.0 # Apply the t2i_adapter_weight, and accumulate. if accum_adapter_state is None: # Handle the first T2I-Adapter. accum_adapter_state = [val * t2i_adapter_weight for val in single_t2i_adapter_data.adapter_state] else: # Add to the previous adapter states. for idx, value in enumerate(single_t2i_adapter_data.adapter_state): accum_adapter_state[idx] += value * t2i_adapter_weight down_intrablock_additional_residuals = accum_adapter_state uc_noise_pred, c_noise_pred = self.invokeai_diffuser.do_unet_step( sample=latent_model_input, timestep=t, # TODO: debug how handled batched and non batched timesteps step_index=step_index, total_step_count=total_step_count, conditioning_data=conditioning_data, ip_adapter_data=ip_adapter_data, down_block_additional_residuals=down_block_additional_residuals, # for ControlNet mid_block_additional_residual=mid_block_additional_residual, # for ControlNet down_intrablock_additional_residuals=down_intrablock_additional_residuals, # for T2I-Adapter ) guidance_scale = conditioning_data.guidance_scale if isinstance(guidance_scale, list): guidance_scale = guidance_scale[step_index] noise_pred = self.invokeai_diffuser._combine(uc_noise_pred, c_noise_pred, guidance_scale) guidance_rescale_multiplier = conditioning_data.guidance_rescale_multiplier if guidance_rescale_multiplier > 0: noise_pred = self._rescale_cfg( noise_pred, c_noise_pred, guidance_rescale_multiplier, ) # compute the previous noisy sample x_t -> x_t-1 step_output = self.scheduler.step(noise_pred, timestep, latents, **scheduler_step_kwargs) # TODO: discuss injection point options. For now this is a patch to get progress images working with inpainting # again. if mask_guidance is not None: # Apply the mask to any "denoised" or "pred_original_sample" fields. if hasattr(step_output, "denoised"): step_output.pred_original_sample = mask_guidance(step_output.denoised, self.scheduler.timesteps[-1]) elif hasattr(step_output, "pred_original_sample"): step_output.pred_original_sample = mask_guidance( step_output.pred_original_sample, self.scheduler.timesteps[-1] ) else: step_output.pred_original_sample = mask_guidance(latents, self.scheduler.timesteps[-1]) return step_output @staticmethod def _rescale_cfg(total_noise_pred, pos_noise_pred, multiplier=0.7): """Implementation of Algorithm 2 from https://arxiv.org/pdf/2305.08891.pdf.""" ro_pos = torch.std(pos_noise_pred, dim=(1, 2, 3), keepdim=True) ro_cfg = torch.std(total_noise_pred, dim=(1, 2, 3), keepdim=True) x_rescaled = total_noise_pred * (ro_pos / ro_cfg) x_final = multiplier * x_rescaled + (1.0 - multiplier) * total_noise_pred return x_final def _unet_forward( self, latents, t, text_embeddings, cross_attention_kwargs: Optional[dict[str, Any]] = None, **kwargs, ): """predict the noise residual""" if is_inpainting_model(self.unet) and latents.size(1) == 4: # Pad out normal non-inpainting inputs for an inpainting model. # FIXME: There are too many layers of functions and we have too many different ways of # overriding things! This should get handled in a way more consistent with the other # use of AddsMaskLatents. latents = AddsMaskLatents( self._unet_forward, mask=torch.ones_like(latents[:1, :1], device=latents.device, dtype=latents.dtype), initial_image_latents=torch.zeros_like(latents[:1], device=latents.device, dtype=latents.dtype), ).add_mask_channels(latents) # First three args should be positional, not keywords, so torch hooks can see them. return self.unet( latents, t, text_embeddings, cross_attention_kwargs=cross_attention_kwargs, **kwargs, ).sample