import json import re from pathlib import Path from typing import Any, Dict, Literal, Optional, Union import safetensors.torch import torch from picklescan.scanner import scan_file_path import invokeai.backend.util.logging as logger from invokeai.backend.util.util import SilenceWarnings from .config import ( AnyModelConfig, BaseModelType, InvalidModelConfigException, ModelConfigFactory, ModelFormat, ModelRepoVariant, ModelType, ModelVariantType, SchedulerPredictionType, ) from .hash import FastModelHash from .util.model_util import lora_token_vector_length, read_checkpoint_meta CkptType = Dict[str, Any] LEGACY_CONFIGS: Dict[BaseModelType, Dict[ModelVariantType, Union[str, Dict[SchedulerPredictionType, str]]]] = { BaseModelType.StableDiffusion1: { ModelVariantType.Normal: { SchedulerPredictionType.Epsilon: "v1-inference.yaml", SchedulerPredictionType.VPrediction: "v1-inference-v.yaml", }, ModelVariantType.Inpaint: "v1-inpainting-inference.yaml", ModelVariantType.Depth: "v2-midas-inference.yaml", }, BaseModelType.StableDiffusion2: { ModelVariantType.Normal: { SchedulerPredictionType.Epsilon: "v2-inference.yaml", SchedulerPredictionType.VPrediction: "v2-inference-v.yaml", }, ModelVariantType.Inpaint: { SchedulerPredictionType.Epsilon: "v2-inpainting-inference.yaml", SchedulerPredictionType.VPrediction: "v2-inpainting-inference-v.yaml", }, }, BaseModelType.StableDiffusionXL: { ModelVariantType.Normal: "sd_xl_base.yaml", }, BaseModelType.StableDiffusionXLRefiner: { ModelVariantType.Normal: "sd_xl_refiner.yaml", }, } class ProbeBase(object): """Base class for probes.""" def __init__(self, model_path: Path): self.model_path = model_path def get_base_type(self) -> BaseModelType: """Get model base type.""" raise NotImplementedError def get_format(self) -> ModelFormat: """Get model file format.""" raise NotImplementedError def get_variant_type(self) -> Optional[ModelVariantType]: """Get model variant type.""" return None def get_scheduler_prediction_type(self) -> Optional[SchedulerPredictionType]: """Get model scheduler prediction type.""" return None def get_image_encoder_model_id(self) -> Optional[str]: """Get image encoder (IP adapters only).""" return None class ModelProbe(object): PROBES: Dict[str, Dict[ModelType, type[ProbeBase]]] = { "diffusers": {}, "checkpoint": {}, "onnx": {}, } CLASS2TYPE = { "StableDiffusionPipeline": ModelType.Main, "StableDiffusionInpaintPipeline": ModelType.Main, "StableDiffusionXLPipeline": ModelType.Main, "StableDiffusionXLImg2ImgPipeline": ModelType.Main, "StableDiffusionXLInpaintPipeline": ModelType.Main, "LatentConsistencyModelPipeline": ModelType.Main, "AutoencoderKL": ModelType.Vae, "AutoencoderTiny": ModelType.Vae, "ControlNetModel": ModelType.ControlNet, "CLIPVisionModelWithProjection": ModelType.CLIPVision, "T2IAdapter": ModelType.T2IAdapter, } @classmethod def register_probe( cls, format: Literal["diffusers", "checkpoint", "onnx"], model_type: ModelType, probe_class: type[ProbeBase] ) -> None: cls.PROBES[format][model_type] = probe_class @classmethod def heuristic_probe( cls, model_path: Path, fields: Optional[Dict[str, Any]] = None, ) -> AnyModelConfig: return cls.probe(model_path, fields) @classmethod def probe( cls, model_path: Path, fields: Optional[Dict[str, Any]] = None, ) -> AnyModelConfig: """ Probe the model at model_path and return its configuration record. :param model_path: Path to the model file (checkpoint) or directory (diffusers). :param fields: An optional dictionary that can be used to override probed fields. Typically used for fields that don't probe well, such as prediction_type. Returns: The appropriate model configuration derived from ModelConfigBase. """ if fields is None: fields = {} format_type = ModelFormat.Diffusers if model_path.is_dir() else ModelFormat.Checkpoint model_info = None model_type = None if format_type == "diffusers": model_type = cls.get_model_type_from_folder(model_path) else: model_type = cls.get_model_type_from_checkpoint(model_path) format_type = ModelFormat.Onnx if model_type == ModelType.ONNX else format_type probe_class = cls.PROBES[format_type].get(model_type) if not probe_class: raise InvalidModelConfigException(f"Unhandled combination of {format_type} and {model_type}") hash = FastModelHash.hash(model_path) probe = probe_class(model_path) fields["path"] = model_path.as_posix() fields["type"] = fields.get("type") or model_type fields["base"] = fields.get("base") or probe.get_base_type() fields["variant"] = fields.get("variant") or probe.get_variant_type() fields["prediction_type"] = fields.get("prediction_type") or probe.get_scheduler_prediction_type() fields["image_encoder_model_id"] = fields.get("image_encoder_model_id") or probe.get_image_encoder_model_id() fields["name"] = fields.get("name") or cls.get_model_name(model_path) fields["description"] = ( fields.get("description") or f"{fields['base'].value} {fields['type'].value} model {fields['name']}" ) fields["format"] = fields.get("format") or probe.get_format() fields["original_hash"] = fields.get("original_hash") or hash fields["current_hash"] = fields.get("current_hash") or hash if format_type == ModelFormat.Diffusers and hasattr(probe, "get_repo_variant"): fields["repo_variant"] = fields.get("repo_variant") or probe.get_repo_variant() # additional fields needed for main and controlnet models if fields["type"] in [ModelType.Main, ModelType.ControlNet] and fields["format"] == ModelFormat.Checkpoint: fields["config"] = cls._get_checkpoint_config_path( model_path, model_type=fields["type"], base_type=fields["base"], variant_type=fields["variant"], prediction_type=fields["prediction_type"], ).as_posix() # additional fields needed for main non-checkpoint models elif fields["type"] == ModelType.Main and fields["format"] in [ ModelFormat.Onnx, ModelFormat.Olive, ModelFormat.Diffusers, ]: fields["upcast_attention"] = fields.get("upcast_attention") or ( fields["base"] == BaseModelType.StableDiffusion2 and fields["prediction_type"] == SchedulerPredictionType.VPrediction ) model_info = ModelConfigFactory.make_config(fields) return model_info @classmethod def get_model_name(cls, model_path: Path) -> str: if model_path.suffix in {".safetensors", ".bin", ".pt", ".ckpt"}: return model_path.stem else: return model_path.name @classmethod def get_model_type_from_checkpoint(cls, model_path: Path, checkpoint: Optional[CkptType] = None) -> ModelType: if model_path.suffix not in (".bin", ".pt", ".ckpt", ".safetensors", ".pth"): raise InvalidModelConfigException(f"{model_path}: unrecognized suffix") if model_path.name == "learned_embeds.bin": return ModelType.TextualInversion ckpt = checkpoint if checkpoint else read_checkpoint_meta(model_path, scan=True) ckpt = ckpt.get("state_dict", ckpt) for key in ckpt.keys(): if any(key.startswith(v) for v in {"cond_stage_model.", "first_stage_model.", "model.diffusion_model."}): return ModelType.Main elif any(key.startswith(v) for v in {"encoder.conv_in", "decoder.conv_in"}): return ModelType.Vae elif any(key.startswith(v) for v in {"lora_te_", "lora_unet_"}): return ModelType.Lora elif any(key.endswith(v) for v in {"to_k_lora.up.weight", "to_q_lora.down.weight"}): return ModelType.Lora elif any(key.startswith(v) for v in {"control_model", "input_blocks"}): return ModelType.ControlNet elif key in {"emb_params", "string_to_param"}: return ModelType.TextualInversion else: # diffusers-ti if len(ckpt) < 10 and all(isinstance(v, torch.Tensor) for v in ckpt.values()): return ModelType.TextualInversion raise InvalidModelConfigException(f"Unable to determine model type for {model_path}") @classmethod def get_model_type_from_folder(cls, folder_path: Path) -> ModelType: """Get the model type of a hugging-face style folder.""" class_name = None error_hint = None for suffix in ["bin", "safetensors"]: if (folder_path / f"learned_embeds.{suffix}").exists(): return ModelType.TextualInversion if (folder_path / f"pytorch_lora_weights.{suffix}").exists(): return ModelType.Lora if (folder_path / "unet/model.onnx").exists(): return ModelType.ONNX if (folder_path / "image_encoder.txt").exists(): return ModelType.IPAdapter i = folder_path / "model_index.json" c = folder_path / "config.json" config_path = i if i.exists() else c if c.exists() else None if config_path: with open(config_path, "r") as file: conf = json.load(file) if "_class_name" in conf: class_name = conf["_class_name"] elif "architectures" in conf: class_name = conf["architectures"][0] else: class_name = None else: error_hint = f"No model_index.json or config.json found in {folder_path}." if class_name and (type := cls.CLASS2TYPE.get(class_name)): return type else: error_hint = f"class {class_name} is not one of the supported classes [{', '.join(cls.CLASS2TYPE.keys())}]" # give up raise InvalidModelConfigException( f"Unable to determine model type for {folder_path}" + (f"; {error_hint}" if error_hint else "") ) @classmethod def _get_checkpoint_config_path( cls, model_path: Path, model_type: ModelType, base_type: BaseModelType, variant_type: ModelVariantType, prediction_type: SchedulerPredictionType, ) -> Path: # look for a YAML file adjacent to the model file first possible_conf = model_path.with_suffix(".yaml") if possible_conf.exists(): return possible_conf.absolute() if model_type == ModelType.Main: config_file = LEGACY_CONFIGS[base_type][variant_type] if isinstance(config_file, dict): # need another tier for sd-2.x models config_file = config_file[prediction_type] elif model_type == ModelType.ControlNet: config_file = ( "../controlnet/cldm_v15.yaml" if base_type == BaseModelType("sd-1") else "../controlnet/cldm_v21.yaml" ) else: raise InvalidModelConfigException( f"{model_path}: Unrecognized combination of model_type={model_type}, base_type={base_type}" ) assert isinstance(config_file, str) return Path(config_file) @classmethod def _scan_and_load_checkpoint(cls, model_path: Path) -> CkptType: with SilenceWarnings(): if model_path.suffix.endswith((".ckpt", ".pt", ".bin")): cls._scan_model(model_path.name, model_path) model = torch.load(model_path) assert isinstance(model, dict) return model else: return safetensors.torch.load_file(model_path) @classmethod def _scan_model(cls, model_name: str, checkpoint: Path) -> None: """ Apply picklescanner to the indicated checkpoint and issue a warning and option to exit if an infected file is identified. """ # scan model scan_result = scan_file_path(checkpoint) if scan_result.infected_files != 0: raise Exception("The model {model_name} is potentially infected by malware. Aborting import.") # ##################################################3 # Checkpoint probing # ##################################################3 class CheckpointProbeBase(ProbeBase): def __init__(self, model_path: Path): super().__init__(model_path) self.checkpoint = ModelProbe._scan_and_load_checkpoint(model_path) def get_format(self) -> ModelFormat: return ModelFormat("checkpoint") def get_variant_type(self) -> ModelVariantType: model_type = ModelProbe.get_model_type_from_checkpoint(self.model_path, self.checkpoint) if model_type != ModelType.Main: return ModelVariantType.Normal state_dict = self.checkpoint.get("state_dict") or self.checkpoint in_channels = state_dict["model.diffusion_model.input_blocks.0.0.weight"].shape[1] if in_channels == 9: return ModelVariantType.Inpaint elif in_channels == 5: return ModelVariantType.Depth elif in_channels == 4: return ModelVariantType.Normal else: raise InvalidModelConfigException( f"Cannot determine variant type (in_channels={in_channels}) at {self.model_path}" ) class PipelineCheckpointProbe(CheckpointProbeBase): def get_base_type(self) -> BaseModelType: checkpoint = self.checkpoint state_dict = self.checkpoint.get("state_dict") or checkpoint key_name = "model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_k.weight" if key_name in state_dict and state_dict[key_name].shape[-1] == 768: return BaseModelType.StableDiffusion1 if key_name in state_dict and state_dict[key_name].shape[-1] == 1024: return BaseModelType.StableDiffusion2 key_name = "model.diffusion_model.input_blocks.4.1.transformer_blocks.0.attn2.to_k.weight" if key_name in state_dict and state_dict[key_name].shape[-1] == 2048: return BaseModelType.StableDiffusionXL elif key_name in state_dict and state_dict[key_name].shape[-1] == 1280: return BaseModelType.StableDiffusionXLRefiner else: raise InvalidModelConfigException("Cannot determine base type") def get_scheduler_prediction_type(self) -> SchedulerPredictionType: """Return model prediction type.""" type = self.get_base_type() if type == BaseModelType.StableDiffusion2: checkpoint = self.checkpoint state_dict = self.checkpoint.get("state_dict") or checkpoint key_name = "model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_k.weight" if key_name in state_dict and state_dict[key_name].shape[-1] == 1024: if "global_step" in checkpoint: if checkpoint["global_step"] == 220000: return SchedulerPredictionType.Epsilon elif checkpoint["global_step"] == 110000: return SchedulerPredictionType.VPrediction return SchedulerPredictionType.VPrediction # a guess for sd2 ckpts elif type == BaseModelType.StableDiffusion1: return SchedulerPredictionType.Epsilon # a reasonable guess for sd1 ckpts else: return SchedulerPredictionType.Epsilon class VaeCheckpointProbe(CheckpointProbeBase): def get_base_type(self) -> BaseModelType: # I can't find any standalone 2.X VAEs to test with! return BaseModelType.StableDiffusion1 class LoRACheckpointProbe(CheckpointProbeBase): """Class for LoRA checkpoints.""" def get_format(self) -> ModelFormat: return ModelFormat("lycoris") def get_base_type(self) -> BaseModelType: checkpoint = self.checkpoint token_vector_length = lora_token_vector_length(checkpoint) if token_vector_length == 768: return BaseModelType.StableDiffusion1 elif token_vector_length == 1024: return BaseModelType.StableDiffusion2 elif token_vector_length == 1280: return BaseModelType.StableDiffusionXL # recognizes format at https://civitai.com/models/224641 elif token_vector_length == 2048: return BaseModelType.StableDiffusionXL else: raise InvalidModelConfigException(f"Unknown LoRA type: {self.model_path}") class TextualInversionCheckpointProbe(CheckpointProbeBase): """Class for probing embeddings.""" def get_format(self) -> ModelFormat: return ModelFormat.EmbeddingFile def get_base_type(self) -> BaseModelType: checkpoint = self.checkpoint if "string_to_token" in checkpoint: token_dim = list(checkpoint["string_to_param"].values())[0].shape[-1] elif "emb_params" in checkpoint: token_dim = checkpoint["emb_params"].shape[-1] elif "clip_g" in checkpoint: token_dim = checkpoint["clip_g"].shape[-1] else: token_dim = list(checkpoint.values())[0].shape[0] if token_dim == 768: return BaseModelType.StableDiffusion1 elif token_dim == 1024: return BaseModelType.StableDiffusion2 elif token_dim == 1280: return BaseModelType.StableDiffusionXL else: raise InvalidModelConfigException(f"{self.model_path}: Could not determine base type") class ControlNetCheckpointProbe(CheckpointProbeBase): """Class for probing controlnets.""" def get_base_type(self) -> BaseModelType: checkpoint = self.checkpoint for key_name in ( "control_model.input_blocks.2.1.transformer_blocks.0.attn2.to_k.weight", "input_blocks.2.1.transformer_blocks.0.attn2.to_k.weight", ): if key_name not in checkpoint: continue if checkpoint[key_name].shape[-1] == 768: return BaseModelType.StableDiffusion1 elif checkpoint[key_name].shape[-1] == 1024: return BaseModelType.StableDiffusion2 raise InvalidModelConfigException("{self.model_path}: Unable to determine base type") class IPAdapterCheckpointProbe(CheckpointProbeBase): def get_base_type(self) -> BaseModelType: raise NotImplementedError() class CLIPVisionCheckpointProbe(CheckpointProbeBase): def get_base_type(self) -> BaseModelType: raise NotImplementedError() class T2IAdapterCheckpointProbe(CheckpointProbeBase): def get_base_type(self) -> BaseModelType: raise NotImplementedError() ######################################################## # classes for probing folders ####################################################### class FolderProbeBase(ProbeBase): def get_variant_type(self) -> ModelVariantType: return ModelVariantType.Normal def get_format(self) -> ModelFormat: return ModelFormat("diffusers") def get_repo_variant(self) -> ModelRepoVariant: # get all files ending in .bin or .safetensors weight_files = list(self.model_path.glob("**/*.safetensors")) weight_files.extend(list(self.model_path.glob("**/*.bin"))) for x in weight_files: if ".fp16" in x.suffixes: return ModelRepoVariant.FP16 if "openvino_model" in x.name: return ModelRepoVariant.OPENVINO if "flax_model" in x.name: return ModelRepoVariant.FLAX if x.suffix == ".onnx": return ModelRepoVariant.ONNX return ModelRepoVariant.DEFAULT class PipelineFolderProbe(FolderProbeBase): def get_base_type(self) -> BaseModelType: with open(self.model_path / "unet" / "config.json", "r") as file: unet_conf = json.load(file) if unet_conf["cross_attention_dim"] == 768: return BaseModelType.StableDiffusion1 elif unet_conf["cross_attention_dim"] == 1024: return BaseModelType.StableDiffusion2 elif unet_conf["cross_attention_dim"] == 1280: return BaseModelType.StableDiffusionXLRefiner elif unet_conf["cross_attention_dim"] == 2048: return BaseModelType.StableDiffusionXL else: raise InvalidModelConfigException(f"Unknown base model for {self.model_path}") def get_scheduler_prediction_type(self) -> SchedulerPredictionType: with open(self.model_path / "scheduler" / "scheduler_config.json", "r") as file: scheduler_conf = json.load(file) if scheduler_conf.get("prediction_type", "epsilon") == "v_prediction": return SchedulerPredictionType.VPrediction elif scheduler_conf.get("prediction_type", "epsilon") == "epsilon": return SchedulerPredictionType.Epsilon else: raise InvalidModelConfigException("Unknown scheduler prediction type: {scheduler_conf['prediction_type']}") def get_variant_type(self) -> ModelVariantType: # This only works for pipelines! Any kind of # exception results in our returning the # "normal" variant type try: config_file = self.model_path / "unet" / "config.json" with open(config_file, "r") as file: conf = json.load(file) in_channels = conf["in_channels"] if in_channels == 9: return ModelVariantType.Inpaint elif in_channels == 5: return ModelVariantType.Depth elif in_channels == 4: return ModelVariantType.Normal except Exception: pass return ModelVariantType.Normal class VaeFolderProbe(FolderProbeBase): def get_base_type(self) -> BaseModelType: if self._config_looks_like_sdxl(): return BaseModelType.StableDiffusionXL elif self._name_looks_like_sdxl(): # but SD and SDXL VAE are the same shape (3-channel RGB to 4-channel float scaled down # by a factor of 8), we can't necessarily tell them apart by config hyperparameters. return BaseModelType.StableDiffusionXL else: return BaseModelType.StableDiffusion1 def _config_looks_like_sdxl(self) -> bool: # config values that distinguish Stability's SD 1.x VAE from their SDXL VAE. config_file = self.model_path / "config.json" if not config_file.exists(): raise InvalidModelConfigException(f"Cannot determine base type for {self.model_path}") with open(config_file, "r") as file: config = json.load(file) return config.get("scaling_factor", 0) == 0.13025 and config.get("sample_size") in [512, 1024] def _name_looks_like_sdxl(self) -> bool: return bool(re.search(r"xl\b", self._guess_name(), re.IGNORECASE)) def _guess_name(self) -> str: name = self.model_path.name if name == "vae": name = self.model_path.parent.name return name class TextualInversionFolderProbe(FolderProbeBase): def get_format(self) -> ModelFormat: return ModelFormat.EmbeddingFolder def get_base_type(self) -> BaseModelType: path = self.model_path / "learned_embeds.bin" if not path.exists(): raise InvalidModelConfigException( f"{self.model_path.as_posix()} does not contain expected 'learned_embeds.bin' file" ) return TextualInversionCheckpointProbe(path).get_base_type() class ONNXFolderProbe(PipelineFolderProbe): def get_base_type(self) -> BaseModelType: # Due to the way the installer is set up, the configuration file for safetensors # will come along for the ride if both the onnx and safetensors forms # share the same directory. We take advantage of this here. if (self.model_path / "unet" / "config.json").exists(): return super().get_base_type() else: logger.warning('Base type probing is not implemented for ONNX models. Assuming "sd-1"') return BaseModelType.StableDiffusion1 def get_format(self) -> ModelFormat: return ModelFormat("onnx") def get_variant_type(self) -> ModelVariantType: return ModelVariantType.Normal class ControlNetFolderProbe(FolderProbeBase): def get_base_type(self) -> BaseModelType: config_file = self.model_path / "config.json" if not config_file.exists(): raise InvalidModelConfigException(f"Cannot determine base type for {self.model_path}") with open(config_file, "r") as file: config = json.load(file) # no obvious way to distinguish between sd2-base and sd2-768 dimension = config["cross_attention_dim"] base_model = ( BaseModelType.StableDiffusion1 if dimension == 768 else ( BaseModelType.StableDiffusion2 if dimension == 1024 else BaseModelType.StableDiffusionXL if dimension == 2048 else None ) ) if not base_model: raise InvalidModelConfigException(f"Unable to determine model base for {self.model_path}") return base_model class LoRAFolderProbe(FolderProbeBase): def get_base_type(self) -> BaseModelType: model_file = None for suffix in ["safetensors", "bin"]: base_file = self.model_path / f"pytorch_lora_weights.{suffix}" if base_file.exists(): model_file = base_file break if not model_file: raise InvalidModelConfigException("Unknown LoRA format encountered") return LoRACheckpointProbe(model_file).get_base_type() class IPAdapterFolderProbe(FolderProbeBase): def get_format(self) -> ModelFormat: return ModelFormat.InvokeAI def get_base_type(self) -> BaseModelType: model_file = self.model_path / "ip_adapter.bin" if not model_file.exists(): raise InvalidModelConfigException("Unknown IP-Adapter model format.") state_dict = torch.load(model_file, map_location="cpu") cross_attention_dim = state_dict["ip_adapter"]["1.to_k_ip.weight"].shape[-1] if cross_attention_dim == 768: return BaseModelType.StableDiffusion1 elif cross_attention_dim == 1024: return BaseModelType.StableDiffusion2 elif cross_attention_dim == 2048: return BaseModelType.StableDiffusionXL else: raise InvalidModelConfigException( f"IP-Adapter had unexpected cross-attention dimension: {cross_attention_dim}." ) def get_image_encoder_model_id(self) -> Optional[str]: encoder_id_path = self.model_path / "image_encoder.txt" if not encoder_id_path.exists(): return None with open(encoder_id_path, "r") as f: image_encoder_model = f.readline().strip() return image_encoder_model class CLIPVisionFolderProbe(FolderProbeBase): def get_base_type(self) -> BaseModelType: return BaseModelType.Any class T2IAdapterFolderProbe(FolderProbeBase): def get_base_type(self) -> BaseModelType: config_file = self.model_path / "config.json" if not config_file.exists(): raise InvalidModelConfigException(f"Cannot determine base type for {self.model_path}") with open(config_file, "r") as file: config = json.load(file) adapter_type = config.get("adapter_type", None) if adapter_type == "full_adapter_xl": return BaseModelType.StableDiffusionXL elif adapter_type == "full_adapter" or "light_adapter": # I haven't seen any T2I adapter models for SD2, so assume that this is an SD1 adapter. return BaseModelType.StableDiffusion1 else: raise InvalidModelConfigException( f"Unable to determine base model for '{self.model_path}' (adapter_type = {adapter_type})." ) ############## register probe classes ###### ModelProbe.register_probe("diffusers", ModelType.Main, PipelineFolderProbe) ModelProbe.register_probe("diffusers", ModelType.Vae, VaeFolderProbe) ModelProbe.register_probe("diffusers", ModelType.Lora, LoRAFolderProbe) ModelProbe.register_probe("diffusers", ModelType.TextualInversion, TextualInversionFolderProbe) ModelProbe.register_probe("diffusers", ModelType.ControlNet, ControlNetFolderProbe) ModelProbe.register_probe("diffusers", ModelType.IPAdapter, IPAdapterFolderProbe) ModelProbe.register_probe("diffusers", ModelType.CLIPVision, CLIPVisionFolderProbe) ModelProbe.register_probe("diffusers", ModelType.T2IAdapter, T2IAdapterFolderProbe) ModelProbe.register_probe("checkpoint", ModelType.Main, PipelineCheckpointProbe) ModelProbe.register_probe("checkpoint", ModelType.Vae, VaeCheckpointProbe) ModelProbe.register_probe("checkpoint", ModelType.Lora, LoRACheckpointProbe) ModelProbe.register_probe("checkpoint", ModelType.TextualInversion, TextualInversionCheckpointProbe) ModelProbe.register_probe("checkpoint", ModelType.ControlNet, ControlNetCheckpointProbe) ModelProbe.register_probe("checkpoint", ModelType.IPAdapter, IPAdapterCheckpointProbe) ModelProbe.register_probe("checkpoint", ModelType.CLIPVision, CLIPVisionCheckpointProbe) ModelProbe.register_probe("checkpoint", ModelType.T2IAdapter, T2IAdapterCheckpointProbe) ModelProbe.register_probe("onnx", ModelType.ONNX, ONNXFolderProbe)