import sys import traceback import torch import invokeai.backend.util.logging as log from ...backend.restoration import Restoration from ...backend.util import choose_torch_device, CPU_DEVICE, MPS_DEVICE # This should be a real base class for postprocessing functions, # but right now we just instantiate the existing gfpgan, esrgan # and codeformer functions. class RestorationServices: '''Face restoration and upscaling''' def __init__(self,args): try: gfpgan, codeformer, esrgan = None, None, None if args.restore or args.esrgan: restoration = Restoration() if args.restore: gfpgan, codeformer = restoration.load_face_restore_models( args.gfpgan_model_path ) else: log.info("Face restoration disabled") if args.esrgan: esrgan = restoration.load_esrgan(args.esrgan_bg_tile) else: log.info("Upscaling disabled") else: log.info("Face restoration and upscaling disabled") except (ModuleNotFoundError, ImportError): print(traceback.format_exc(), file=sys.stderr) log.info("You may need to install the ESRGAN and/or GFPGAN modules") self.device = torch.device(choose_torch_device()) self.gfpgan = gfpgan self.codeformer = codeformer self.esrgan = esrgan # note that this one method does gfpgan and codepath reconstruction, as well as # esrgan upscaling # TO DO: refactor into separate methods def upscale_and_reconstruct( self, image_list, facetool="gfpgan", upscale=None, upscale_denoise_str=0.75, strength=0.0, codeformer_fidelity=0.75, save_original=False, image_callback=None, prefix=None, ): results = [] for r in image_list: image, seed = r try: if strength > 0: if self.gfpgan is not None or self.codeformer is not None: if facetool == "gfpgan": if self.gfpgan is None: log.info( "GFPGAN not found. Face restoration is disabled." ) else: image = self.gfpgan.process(image, strength, seed) if facetool == "codeformer": if self.codeformer is None: log.info( "CodeFormer not found. Face restoration is disabled." ) else: cf_device = ( CPU_DEVICE if self.device == MPS_DEVICE else self.device ) image = self.codeformer.process( image=image, strength=strength, device=cf_device, seed=seed, fidelity=codeformer_fidelity, ) else: log.info("Face Restoration is disabled.") if upscale is not None: if self.esrgan is not None: if len(upscale) < 2: upscale.append(0.75) image = self.esrgan.process( image, upscale[1], seed, int(upscale[0]), denoise_str=upscale_denoise_str, ) else: log.info("ESRGAN is disabled. Image not upscaled.") except Exception as e: log.info( f"Error running RealESRGAN or GFPGAN. Your image was not upscaled.\n{e}" ) if image_callback is not None: image_callback(image, seed, upscaled=True, use_prefix=prefix) else: r[0] = image results.append([image, seed]) return results