import importlib import torch import numpy as np import math from collections import abc from einops import rearrange from functools import partial import multiprocessing as mp from threading import Thread from queue import Queue from inspect import isfunction from PIL import Image, ImageDraw, ImageFont def log_txt_as_img(wh, xc, size=10): # wh a tuple of (width, height) # xc a list of captions to plot b = len(xc) txts = list() for bi in range(b): txt = Image.new('RGB', wh, color='white') draw = ImageDraw.Draw(txt) font = ImageFont.load_default() nc = int(40 * (wh[0] / 256)) lines = '\n'.join( xc[bi][start : start + nc] for start in range(0, len(xc[bi]), nc) ) try: draw.text((0, 0), lines, fill='black', font=font) except UnicodeEncodeError: print('Cant encode string for logging. Skipping.') txt = np.array(txt).transpose(2, 0, 1) / 127.5 - 1.0 txts.append(txt) txts = np.stack(txts) txts = torch.tensor(txts) return txts def ismap(x): if not isinstance(x, torch.Tensor): return False return (len(x.shape) == 4) and (x.shape[1] > 3) def isimage(x): if not isinstance(x, torch.Tensor): return False return (len(x.shape) == 4) and (x.shape[1] == 3 or x.shape[1] == 1) def exists(x): return x is not None def default(val, d): if exists(val): return val return d() if isfunction(d) else d def mean_flat(tensor): """ https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/nn.py#L86 Take the mean over all non-batch dimensions. """ return tensor.mean(dim=list(range(1, len(tensor.shape)))) def count_params(model, verbose=False): total_params = sum(p.numel() for p in model.parameters()) if verbose: print( f'{model.__class__.__name__} has {total_params * 1.e-6:.2f} M params.' ) return total_params def instantiate_from_config(config, **kwargs): if not 'target' in config: if config == '__is_first_stage__': return None elif config == '__is_unconditional__': return None raise KeyError('Expected key `target` to instantiate.') return get_obj_from_str(config['target'])( **config.get('params', dict()), **kwargs ) def get_obj_from_str(string, reload=False): module, cls = string.rsplit('.', 1) if reload: module_imp = importlib.import_module(module) importlib.reload(module_imp) return getattr(importlib.import_module(module, package=None), cls) def _do_parallel_data_prefetch(func, Q, data, idx, idx_to_fn=False): # create dummy dataset instance # run prefetching if idx_to_fn: res = func(data, worker_id=idx) else: res = func(data) Q.put([idx, res]) Q.put('Done') def parallel_data_prefetch( func: callable, data, n_proc, target_data_type='ndarray', cpu_intensive=True, use_worker_id=False, ): # if target_data_type not in ["ndarray", "list"]: # raise ValueError( # "Data, which is passed to parallel_data_prefetch has to be either of type list or ndarray." # ) if isinstance(data, np.ndarray) and target_data_type == 'list': raise ValueError('list expected but function got ndarray.') elif isinstance(data, abc.Iterable): if isinstance(data, dict): print( f'WARNING:"data" argument passed to parallel_data_prefetch is a dict: Using only its values and disregarding keys.' ) data = list(data.values()) if target_data_type == 'ndarray': data = np.asarray(data) else: data = list(data) else: raise TypeError( f'The data, that shall be processed parallel has to be either an np.ndarray or an Iterable, but is actually {type(data)}.' ) if cpu_intensive: Q = mp.Queue(1000) proc = mp.Process else: Q = Queue(1000) proc = Thread # spawn processes if target_data_type == 'ndarray': arguments = [ [func, Q, part, i, use_worker_id] for i, part in enumerate(np.array_split(data, n_proc)) ] else: step = ( int(len(data) / n_proc + 1) if len(data) % n_proc != 0 else int(len(data) / n_proc) ) arguments = [ [func, Q, part, i, use_worker_id] for i, part in enumerate( [data[i : i + step] for i in range(0, len(data), step)] ) ] processes = [] for i in range(n_proc): p = proc(target=_do_parallel_data_prefetch, args=arguments[i]) processes += [p] # start processes print(f'Start prefetching...') import time start = time.time() gather_res = [[] for _ in range(n_proc)] try: for p in processes: p.start() k = 0 while k < n_proc: # get result res = Q.get() if res == 'Done': k += 1 else: gather_res[res[0]] = res[1] except Exception as e: print('Exception: ', e) for p in processes: p.terminate() raise e finally: for p in processes: p.join() print(f'Prefetching complete. [{time.time() - start} sec.]') if target_data_type == 'ndarray': if not isinstance(gather_res[0], np.ndarray): return np.concatenate([np.asarray(r) for r in gather_res], axis=0) # order outputs return np.concatenate(gather_res, axis=0) elif target_data_type == 'list': out = [] for r in gather_res: out.extend(r) return out else: return gather_res def rand_perlin_2d(shape, res, device, fade = lambda t: 6*t**5 - 15*t**4 + 10*t**3): delta = (res[0] / shape[0], res[1] / shape[1]) d = (shape[0] // res[0], shape[1] // res[1]) grid = torch.stack(torch.meshgrid(torch.arange(0, res[0], delta[0]), torch.arange(0, res[1], delta[1]), indexing='ij'), dim = -1).to(device) % 1 rand_val = torch.rand(res[0]+1, res[1]+1) angles = 2*math.pi*rand_val gradients = torch.stack((torch.cos(angles), torch.sin(angles)), dim = -1) tile_grads = lambda slice1, slice2: gradients[slice1[0]:slice1[1], slice2[0]:slice2[1]].repeat_interleave(d[0], 0).repeat_interleave(d[1], 1) dot = lambda grad, shift: (torch.stack((grid[:shape[0],:shape[1],0] + shift[0], grid[:shape[0],:shape[1], 1] + shift[1] ), dim = -1) * grad[:shape[0], :shape[1]]).sum(dim = -1) n00 = dot(tile_grads([0, -1], [0, -1]), [0, 0]) n10 = dot(tile_grads([1, None], [0, -1]), [-1, 0]) n01 = dot(tile_grads([0, -1],[1, None]), [0, -1]) n11 = dot(tile_grads([1, None], [1, None]), [-1,-1]) t = fade(grid[:shape[0], :shape[1]]) return math.sqrt(2) * torch.lerp(torch.lerp(n00, n10, t[..., 0]), torch.lerp(n01, n11, t[..., 0]), t[..., 1])