# copied from https://github.com/tencent-ailab/IP-Adapter (Apache License 2.0) # and modified as needed from typing import List import torch # FIXME: Getting errors when trying to use PyTorch 2.0 versions of IPAttnProcessor and AttnProcessor # so for now falling back to the default versions # from .utils import is_torch2_available # if is_torch2_available: # from .attention_processor import IPAttnProcessor2_0 as IPAttnProcessor, AttnProcessor2_0 as AttnProcessor # else: # from .attention_processor import IPAttnProcessor, AttnProcessor from PIL import Image from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from .attention_processor import AttnProcessor, IPAttnProcessor from .resampler import Resampler class ImageProjModel(torch.nn.Module): """Projection Model""" def __init__(self, cross_attention_dim=1024, clip_embeddings_dim=1024, clip_extra_context_tokens=4): super().__init__() self.cross_attention_dim = cross_attention_dim self.clip_extra_context_tokens = clip_extra_context_tokens self.proj = torch.nn.Linear(clip_embeddings_dim, self.clip_extra_context_tokens * cross_attention_dim) self.norm = torch.nn.LayerNorm(cross_attention_dim) def forward(self, image_embeds): embeds = image_embeds clip_extra_context_tokens = self.proj(embeds).reshape( -1, self.clip_extra_context_tokens, self.cross_attention_dim ) clip_extra_context_tokens = self.norm(clip_extra_context_tokens) return clip_extra_context_tokens class IPAdapter: def __init__(self, sd_pipe, image_encoder_path, ip_ckpt, device, num_tokens=4): self.device = device self.image_encoder_path = image_encoder_path self.ip_ckpt = ip_ckpt self.num_tokens = num_tokens # FIXME: # InvokeAI StableDiffusionPipeline has a to() method that isn't meant to be used # so for now assuming that pipeline is already on the correct device # self.pipe = sd_pipe.to(self.device) self.pipe = sd_pipe self.set_ip_adapter() # load image encoder self.image_encoder = CLIPVisionModelWithProjection.from_pretrained(self.image_encoder_path).to( self.device, dtype=torch.float16 ) self.clip_image_processor = CLIPImageProcessor() # image proj model self.image_proj_model = self.init_proj() self.load_ip_adapter() def init_proj(self): image_proj_model = ImageProjModel( cross_attention_dim=self.pipe.unet.config.cross_attention_dim, clip_embeddings_dim=self.image_encoder.config.projection_dim, clip_extra_context_tokens=self.num_tokens, ).to(self.device, dtype=torch.float16) return image_proj_model def set_ip_adapter(self): unet = self.pipe.unet attn_procs = {} print("Original UNet Attn Processors count:", len(unet.attn_processors)) print(unet.attn_processors.keys()) for name in unet.attn_processors.keys(): cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim if name.startswith("mid_block"): hidden_size = unet.config.block_out_channels[-1] elif name.startswith("up_blocks"): block_id = int(name[len("up_blocks.")]) hidden_size = list(reversed(unet.config.block_out_channels))[block_id] elif name.startswith("down_blocks"): block_id = int(name[len("down_blocks.")]) hidden_size = unet.config.block_out_channels[block_id] if cross_attention_dim is None: attn_procs[name] = AttnProcessor() else: print("swapping in IPAttnProcessor for", name) attn_procs[name] = IPAttnProcessor( hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, scale=1.0, ).to(self.device, dtype=torch.float16) unet.set_attn_processor(attn_procs) print("Modified UNet Attn Processors count:", len(unet.attn_processors)) print(unet.attn_processors.keys()) def load_ip_adapter(self): state_dict = torch.load(self.ip_ckpt, map_location="cpu") self.image_proj_model.load_state_dict(state_dict["image_proj"]) ip_layers = torch.nn.ModuleList(self.pipe.unet.attn_processors.values()) ip_layers.load_state_dict(state_dict["ip_adapter"]) @torch.inference_mode() def get_image_embeds(self, pil_image): if isinstance(pil_image, Image.Image): pil_image = [pil_image] clip_image = self.clip_image_processor(images=pil_image, return_tensors="pt").pixel_values clip_image_embeds = self.image_encoder(clip_image.to(self.device, dtype=torch.float16)).image_embeds image_prompt_embeds = self.image_proj_model(clip_image_embeds) uncond_image_prompt_embeds = self.image_proj_model(torch.zeros_like(clip_image_embeds)) return image_prompt_embeds, uncond_image_prompt_embeds def set_scale(self, scale): for attn_processor in self.pipe.unet.attn_processors.values(): if isinstance(attn_processor, IPAttnProcessor): attn_processor.scale = scale # IPAdapter.generate() method is not used for InvokeAI # left here for reference def generate( self, pil_image, prompt=None, negative_prompt=None, scale=1.0, num_samples=4, seed=-1, guidance_scale=7.5, num_inference_steps=30, **kwargs, ): self.set_scale(scale) if isinstance(pil_image, Image.Image): num_prompts = 1 else: num_prompts = len(pil_image) if prompt is None: prompt = "best quality, high quality" if negative_prompt is None: negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality" if not isinstance(prompt, List): prompt = [prompt] * num_prompts if not isinstance(negative_prompt, List): negative_prompt = [negative_prompt] * num_prompts image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds(pil_image) bs_embed, seq_len, _ = image_prompt_embeds.shape image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1) image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1) uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1) uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1) with torch.inference_mode(): prompt_embeds = self.pipe._encode_prompt( prompt, device=self.device, num_images_per_prompt=num_samples, do_classifier_free_guidance=True, negative_prompt=negative_prompt, ) negative_prompt_embeds_, prompt_embeds_ = prompt_embeds.chunk(2) prompt_embeds = torch.cat([prompt_embeds_, image_prompt_embeds], dim=1) negative_prompt_embeds = torch.cat([negative_prompt_embeds_, uncond_image_prompt_embeds], dim=1) generator = torch.Generator(self.device).manual_seed(seed) if seed is not None else None images = self.pipe( prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, generator=generator, **kwargs, ).images return images class IPAdapterXL(IPAdapter): """SDXL""" def generate( self, pil_image, prompt=None, negative_prompt=None, scale=1.0, num_samples=4, seed=-1, num_inference_steps=30, **kwargs, ): self.set_scale(scale) if isinstance(pil_image, Image.Image): num_prompts = 1 else: num_prompts = len(pil_image) if prompt is None: prompt = "best quality, high quality" if negative_prompt is None: negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality" if not isinstance(prompt, List): prompt = [prompt] * num_prompts if not isinstance(negative_prompt, List): negative_prompt = [negative_prompt] * num_prompts image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds(pil_image) bs_embed, seq_len, _ = image_prompt_embeds.shape image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1) image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1) uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1) uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1) with torch.inference_mode(): ( prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds, ) = self.pipe.encode_prompt( prompt, num_images_per_prompt=num_samples, do_classifier_free_guidance=True, negative_prompt=negative_prompt, ) prompt_embeds = torch.cat([prompt_embeds, image_prompt_embeds], dim=1) negative_prompt_embeds = torch.cat([negative_prompt_embeds, uncond_image_prompt_embeds], dim=1) generator = torch.Generator(self.device).manual_seed(seed) if seed is not None else None images = self.pipe( prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, pooled_prompt_embeds=pooled_prompt_embeds, negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, num_inference_steps=num_inference_steps, generator=generator, **kwargs, ).images return images class IPAdapterPlus(IPAdapter): """IP-Adapter with fine-grained features""" def init_proj(self): image_proj_model = Resampler( dim=self.pipe.unet.config.cross_attention_dim, depth=4, dim_head=64, heads=12, num_queries=self.num_tokens, embedding_dim=self.image_encoder.config.hidden_size, output_dim=self.pipe.unet.config.cross_attention_dim, ff_mult=4, ).to(self.device, dtype=torch.float16) return image_proj_model @torch.inference_mode() def get_image_embeds(self, pil_image): if isinstance(pil_image, Image.Image): pil_image = [pil_image] clip_image = self.clip_image_processor(images=pil_image, return_tensors="pt").pixel_values clip_image = clip_image.to(self.device, dtype=torch.float16) clip_image_embeds = self.image_encoder(clip_image, output_hidden_states=True).hidden_states[-2] image_prompt_embeds = self.image_proj_model(clip_image_embeds) uncond_clip_image_embeds = self.image_encoder( torch.zeros_like(clip_image), output_hidden_states=True ).hidden_states[-2] uncond_image_prompt_embeds = self.image_proj_model(uncond_clip_image_embeds) return image_prompt_embeds, uncond_image_prompt_embeds