import torch.nn as nn def _conv_forward_asymmetric(self, input, weight, bias): """ Patch for Conv2d._conv_forward that supports asymmetric padding """ working = nn.functional.pad(input, self.asymmetric_padding['x'], mode=self.asymmetric_padding_mode['x']) working = nn.functional.pad(working, self.asymmetric_padding['y'], mode=self.asymmetric_padding_mode['y']) return nn.functional.conv2d(working, weight, bias, self.stride, nn.modules.utils._pair(0), self.dilation, self.groups) def configure_model_padding(model, seamless, seamless_axes): """ Modifies the 2D convolution layers to use a circular padding mode based on the `seamless` and `seamless_axes` options. """ for m in model.modules(): if isinstance(m, (nn.Conv2d, nn.ConvTranspose2d)): if seamless: m.asymmetric_padding_mode = {} m.asymmetric_padding = {} m.asymmetric_padding_mode['x'] = 'circular' if ('x' in seamless_axes) else 'constant' m.asymmetric_padding['x'] = (m._reversed_padding_repeated_twice[0], m._reversed_padding_repeated_twice[1], 0, 0) m.asymmetric_padding_mode['y'] = 'circular' if ('y' in seamless_axes) else 'constant' m.asymmetric_padding['y'] = (0, 0, m._reversed_padding_repeated_twice[2], m._reversed_padding_repeated_twice[3]) m._conv_forward = _conv_forward_asymmetric.__get__(m, nn.Conv2d) else: m._conv_forward = nn.Conv2d._conv_forward.__get__(m, nn.Conv2d) if hasattr(m, 'asymmetric_padding_mode'): del m.asymmetric_padding_mode if hasattr(m, 'asymmetric_padding'): del m.asymmetric_padding