# Copyright (c) 2022 Lincoln D. Stein (https://github.com/lstein) # Derived from source code carrying the following copyrights # Copyright (c) 2022 Machine Vision and Learning Group, LMU Munich # Copyright (c) 2022 Robin Rombach and Patrick Esser and contributors import torch import numpy as np import random import sys import os from omegaconf import OmegaConf from PIL import Image from tqdm import tqdm, trange from itertools import islice from einops import rearrange, repeat from torchvision.utils import make_grid from pytorch_lightning import seed_everything from torch import autocast from contextlib import contextmanager, nullcontext import transformers import time import re import traceback from ldm.util import instantiate_from_config from ldm.models.diffusion.ddim import DDIMSampler from ldm.models.diffusion.plms import PLMSSampler from ldm.models.diffusion.ksampler import KSampler from ldm.dream_util import PngWriter """Simplified text to image API for stable diffusion/latent diffusion Example Usage: from ldm.simplet2i import T2I # Create an object with default values t2i = T2I(model = // models/ldm/stable-diffusion-v1/model.ckpt config = // configs/stable-diffusion/v1-inference.yaml iterations = // how many times to run the sampling (1) batch_size = // how many images to generate per sampling (1) steps = // 50 seed = // current system time sampler_name= ['ddim', 'k_dpm_2_a', 'k_dpm_2', 'k_euler_a', 'k_euler', 'k_heun', 'k_lms', 'plms'] // k_lms grid = // false width = // image width, multiple of 64 (512) height = // image height, multiple of 64 (512) cfg_scale = // unconditional guidance scale (7.5) ) # do the slow model initialization t2i.load_model() # Do the fast inference & image generation. Any options passed here # override the default values assigned during class initialization # Will call load_model() if the model was not previously loaded and so # may be slow at first. # The method returns a list of images. Each row of the list is a sub-list of [filename,seed] results = t2i.prompt2png(prompt = "an astronaut riding a horse", outdir = "./outputs/samples", iterations = 3) for row in results: print(f'filename={row[0]}') print(f'seed ={row[1]}') # Same thing, but using an initial image. results = t2i.prompt2png(prompt = "an astronaut riding a horse", outdir = "./outputs/, iterations = 3, init_img = "./sketches/horse+rider.png") for row in results: print(f'filename={row[0]}') print(f'seed ={row[1]}') # Same thing, but we return a series of Image objects, which lets you manipulate them, # combine them, and save them under arbitrary names results = t2i.prompt2image(prompt = "an astronaut riding a horse" outdir = "./outputs/") for row in results: im = row[0] seed = row[1] im.save(f'./outputs/samples/an_astronaut_riding_a_horse-{seed}.png') im.thumbnail(100,100).save('./outputs/samples/astronaut_thumb.jpg') Note that the old txt2img() and img2img() calls are deprecated but will still work. """ class T2I: """T2I class Attributes ---------- model config iterations batch_size steps seed sampler_name width height cfg_scale latent_channels downsampling_factor precision strength embedding_path The vast majority of these arguments default to reasonable values. """ def __init__(self, batch_size=1, iterations = 1, steps=50, seed=None, cfg_scale=7.5, weights="models/ldm/stable-diffusion-v1/model.ckpt", config = "configs/stable-diffusion/v1-inference.yaml", width=512, height=512, sampler_name="klms", latent_channels=4, downsampling_factor=8, ddim_eta=0.0, # deterministic precision='autocast', full_precision=False, strength=0.75, # default in scripts/img2img.py embedding_path=None, latent_diffusion_weights=False, # just to keep track of this parameter when regenerating prompt device='cuda' ): self.batch_size = batch_size self.iterations = iterations self.width = width self.height = height self.steps = steps self.cfg_scale = cfg_scale self.weights = weights self.config = config self.sampler_name = sampler_name self.latent_channels = latent_channels self.downsampling_factor = downsampling_factor self.ddim_eta = ddim_eta self.precision = precision self.full_precision = full_precision self.strength = strength self.embedding_path = embedding_path self.model = None # empty for now self.sampler = None self.latent_diffusion_weights=latent_diffusion_weights self.device = device if seed is None: self.seed = self._new_seed() else: self.seed = seed transformers.logging.set_verbosity_error() def prompt2png(self,prompt,outdir,**kwargs): ''' Takes a prompt and an output directory, writes out the requested number of PNG files, and returns an array of [[filename,seed],[filename,seed]...] Optional named arguments are the same as those passed to T2I and prompt2image() ''' results = self.prompt2image(prompt,**kwargs) pngwriter = PngWriter(outdir,prompt,kwargs.get('batch_size',self.batch_size)) for r in results: metadata_str = f'prompt2png("{prompt}" {kwargs} seed={r[1]}' # gets written into the PNG pngwriter.write_image(r[0],r[1]) return pngwriter.files_written def txt2img(self,prompt,**kwargs): outdir = kwargs.get('outdir','outputs/img-samples') return self.prompt2png(prompt,outdir,**kwargs) def img2img(self,prompt,**kwargs): outdir = kwargs.get('outdir','outputs/img-samples') assert 'init_img' in kwargs,'call to img2img() must include the init_img argument' return self.prompt2png(prompt,outdir,**kwargs) def prompt2image(self, # these are common prompt, batch_size=None, iterations=None, steps=None, seed=None, cfg_scale=None, ddim_eta=None, skip_normalize=False, image_callback=None, # these are specific to txt2img width=None, height=None, # these are specific to img2img init_img=None, strength=None, variants=None, **args): # eat up additional cruft ''' ldm.prompt2image() is the common entry point for txt2img() and img2img() It takes the following arguments: prompt // prompt string (no default) iterations // iterations (1); image count=iterations x batch_size batch_size // images per iteration (1) steps // refinement steps per iteration seed // seed for random number generator width // width of image, in multiples of 64 (512) height // height of image, in multiples of 64 (512) cfg_scale // how strongly the prompt influences the image (7.5) (must be >1) init_img // path to an initial image - its dimensions override width and height strength // strength for noising/unnoising init_img. 0.0 preserves image exactly, 1.0 replaces it completely ddim_eta // image randomness (eta=0.0 means the same seed always produces the same image) variants // if >0, the 1st generated image will be passed back to img2img to generate the requested number of variants callback // a function or method that will be called each time an image is generated To use the callback, define a function of method that receives two arguments, an Image object and the seed. You can then do whatever you like with the image, including converting it to different formats and manipulating it. For example: def process_image(image,seed): image.save(f{'images/seed.png'}) The callback used by the prompt2png() can be found in ldm/dream_util.py. It contains code to create the requested output directory, select a unique informative name for each image, and write the prompt into the PNG metadata. ''' steps = steps or self.steps seed = seed or self.seed width = width or self.width height = height or self.height cfg_scale = cfg_scale or self.cfg_scale ddim_eta = ddim_eta or self.ddim_eta batch_size = batch_size or self.batch_size iterations = iterations or self.iterations strength = strength or self.strength model = self.load_model() # will instantiate the model or return it from cache assert cfg_scale>1.0, "CFG_Scale (-C) must be >1.0" assert 0. <= strength <= 1., 'can only work with strength in [0.0, 1.0]' w = int(width/64) * 64 h = int(height/64) * 64 if h != height or w != width: print(f'Height and width must be multiples of 64. Resizing to {h}x{w}') height = h width = w data = [batch_size * [prompt]] scope = autocast if self.precision=="autocast" else nullcontext tic = time.time() if init_img: assert os.path.exists(init_img),f'{init_img}: File not found' results = self._img2img(prompt, data=data,precision_scope=scope, batch_size=batch_size,iterations=iterations, steps=steps,seed=seed,cfg_scale=cfg_scale,ddim_eta=ddim_eta, skip_normalize=skip_normalize, init_img=init_img,strength=strength,variants=variants, callback=image_callback) else: results = self._txt2img(prompt, data=data,precision_scope=scope, batch_size=batch_size,iterations=iterations, steps=steps,seed=seed,cfg_scale=cfg_scale,ddim_eta=ddim_eta, skip_normalize=skip_normalize, width=width,height=height, callback=image_callback) toc = time.time() print(f'{len(results)} images generated in',"%4.2fs"% (toc-tic)) return results @torch.no_grad() def _txt2img(self,prompt, data,precision_scope, batch_size,iterations, steps,seed,cfg_scale,ddim_eta, skip_normalize, width,height, callback): # the callback is called each time a new Image is generated """ Generate an image from the prompt, writing iteration images into the outdir The output is a list of lists in the format: [[image1,seed1], [image2,seed2],...] """ sampler = self.sampler images = list() image_count = 0 # Gawd. Too many levels of indent here. Need to refactor into smaller routines! try: with precision_scope(self.device.type), self.model.ema_scope(): all_samples = list() for n in trange(iterations, desc="Sampling"): seed_everything(seed) for prompts in tqdm(data, desc="data", dynamic_ncols=True): uc = None if cfg_scale != 1.0: uc = self.model.get_learned_conditioning(batch_size * [""]) if isinstance(prompts, tuple): prompts = list(prompts) # weighted sub-prompts subprompts,weights = T2I._split_weighted_subprompts(prompts[0]) if len(subprompts) > 1: # i dont know if this is correct.. but it works c = torch.zeros_like(uc) # get total weight for normalizing totalWeight = sum(weights) # normalize each "sub prompt" and add it for i in range(0,len(subprompts)): weight = weights[i] if not skip_normalize: weight = weight / totalWeight c = torch.add(c,self.model.get_learned_conditioning(subprompts[i]), alpha=weight) else: # just standard 1 prompt c = self.model.get_learned_conditioning(prompts) shape = [self.latent_channels, height // self.downsampling_factor, width // self.downsampling_factor] samples_ddim, _ = sampler.sample(S=steps, conditioning=c, batch_size=batch_size, shape=shape, verbose=False, unconditional_guidance_scale=cfg_scale, unconditional_conditioning=uc, eta=ddim_eta) x_samples_ddim = self.model.decode_first_stage(samples_ddim) x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0) for x_sample in x_samples_ddim: x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c') image = Image.fromarray(x_sample.astype(np.uint8)) images.append([image,seed]) if callback is not None: callback(image,seed) seed = self._new_seed() except KeyboardInterrupt: print('*interrupted*') print('Partial results will be returned; if --grid was requested, nothing will be returned.') except RuntimeError as e: print(str(e)) return images @torch.no_grad() def _img2img(self,prompt, data,precision_scope, batch_size,iterations, steps,seed,cfg_scale,ddim_eta, skip_normalize, init_img,strength,variants, callback): """ Generate an image from the prompt and the initial image, writing iteration images into the outdir The output is a list of lists in the format: [[image,seed1], [image,seed2],...] """ # PLMS sampler not supported yet, so ignore previous sampler if self.sampler_name!='ddim': print(f"sampler '{self.sampler_name}' is not yet supported. Using DDM sampler") sampler = DDIMSampler(self.model, device=self.device) else: sampler = self.sampler init_image = self._load_img(init_img).to(self.device) init_image = repeat(init_image, '1 ... -> b ...', b=batch_size) with precision_scope(self.device.type): init_latent = self.model.get_first_stage_encoding(self.model.encode_first_stage(init_image)) # move to latent space sampler.make_schedule(ddim_num_steps=steps, ddim_eta=ddim_eta, verbose=False) t_enc = int(strength * steps) # print(f"target t_enc is {t_enc} steps") images = list() try: with precision_scope(self.device.type), self.model.ema_scope(): all_samples = list() for n in trange(iterations, desc="Sampling"): seed_everything(seed) for prompts in tqdm(data, desc="data", dynamic_ncols=True): uc = None if cfg_scale != 1.0: uc = self.model.get_learned_conditioning(batch_size * [""]) if isinstance(prompts, tuple): prompts = list(prompts) # weighted sub-prompts subprompts,weights = T2I._split_weighted_subprompts(prompts[0]) if len(subprompts) > 1: # i dont know if this is correct.. but it works c = torch.zeros_like(uc) # get total weight for normalizing totalWeight = sum(weights) # normalize each "sub prompt" and add it for i in range(0,len(subprompts)): weight = weights[i] if not skip_normalize: weight = weight / totalWeight c = torch.add(c,self.model.get_learned_conditioning(subprompts[i]), alpha=weight) else: # just standard 1 prompt c = self.model.get_learned_conditioning(prompts) # encode (scaled latent) z_enc = sampler.stochastic_encode(init_latent, torch.tensor([t_enc]*batch_size).to(self.device)) # decode it samples = sampler.decode(z_enc, c, t_enc, unconditional_guidance_scale=cfg_scale, unconditional_conditioning=uc,) x_samples = self.model.decode_first_stage(samples) x_samples = torch.clamp((x_samples + 1.0) / 2.0, min=0.0, max=1.0) for x_sample in x_samples: x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c') image = Image.fromarray(x_sample.astype(np.uint8)) images.append([image,seed]) if callback is not None: callback(image,seed) seed = self._new_seed() except KeyboardInterrupt: print('*interrupted*') print('Partial results will be returned; if --grid was requested, nothing will be returned.') except RuntimeError as e: print("Oops! A runtime error has occurred. If this is unexpected, please copy-and-paste this stack trace and post it as an Issue to http://github.com/lstein/stable-diffusion") traceback.print_exc() return images def _new_seed(self): self.seed = random.randrange(0,np.iinfo(np.uint32).max) return self.seed def load_model(self): """ Load and initialize the model from configuration variables passed at object creation time """ if self.model is None: seed_everything(self.seed) try: config = OmegaConf.load(self.config) self.device = torch.device(self.device) if torch.cuda.is_available() else torch.device("cpu") model = self._load_model_from_config(config,self.weights) if self.embedding_path is not None: model.embedding_manager.load(self.embedding_path) self.model = model.to(self.device) # model.to doesn't change the cond_stage_model.device used to move the tokenizer output, so set it here self.model.cond_stage_model.device = self.device except AttributeError: raise SystemExit msg = f'setting sampler to {self.sampler_name}' if self.sampler_name=='plms': self.sampler = PLMSSampler(self.model, device=self.device) elif self.sampler_name == 'ddim': self.sampler = DDIMSampler(self.model, device=self.device) elif self.sampler_name == 'k_dpm_2_a': self.sampler = KSampler(self.model, 'dpm_2_ancestral', device=self.device) elif self.sampler_name == 'k_dpm_2': self.sampler = KSampler(self.model, 'dpm_2', device=self.device) elif self.sampler_name == 'k_euler_a': self.sampler = KSampler(self.model, 'euler_ancestral', device=self.device) elif self.sampler_name == 'k_euler': self.sampler = KSampler(self.model, 'euler', device=self.device) elif self.sampler_name == 'k_heun': self.sampler = KSampler(self.model, 'heun', device=self.device) elif self.sampler_name == 'k_lms': self.sampler = KSampler(self.model, 'lms', device=self.device) else: msg = f'unsupported sampler {self.sampler_name}, defaulting to plms' self.sampler = PLMSSampler(self.model, device=self.device) print(msg) return self.model def _load_model_from_config(self, config, ckpt): print(f"Loading model from {ckpt}") pl_sd = torch.load(ckpt, map_location="cpu") # if "global_step" in pl_sd: # print(f"Global Step: {pl_sd['global_step']}") sd = pl_sd["state_dict"] model = instantiate_from_config(config.model) m, u = model.load_state_dict(sd, strict=False) model.to(self.device) model.eval() if self.full_precision: print('Using slower but more accurate full-precision math (--full_precision)') else: print('Using half precision math. Call with --full_precision to use slower but more accurate full precision.') model.half() return model def _load_img(self,path): image = Image.open(path).convert("RGB") w, h = image.size print(f"loaded input image of size ({w}, {h}) from {path}") w, h = map(lambda x: x - x % 32, (w, h)) # resize to integer multiple of 32 image = image.resize((w, h), resample=Image.Resampling.LANCZOS) image = np.array(image).astype(np.float32) / 255.0 image = image[None].transpose(0, 3, 1, 2) image = torch.from_numpy(image) return 2.*image - 1. def _split_weighted_subprompts(text): """ grabs all text up to the first occurrence of ':' uses the grabbed text as a sub-prompt, and takes the value following ':' as weight if ':' has no value defined, defaults to 1.0 repeats until no text remaining """ remaining = len(text) prompts = [] weights = [] while remaining > 0: if ":" in text: idx = text.index(":") # first occurrence from start # grab up to index as sub-prompt prompt = text[:idx] remaining -= idx # remove from main text text = text[idx+1:] # find value for weight if " " in text: idx = text.index(" ") # first occurence else: # no space, read to end idx = len(text) if idx != 0: try: weight = float(text[:idx]) except: # couldn't treat as float print(f"Warning: '{text[:idx]}' is not a value, are you missing a space?") weight = 1.0 else: # no value found weight = 1.0 # remove from main text remaining -= idx text = text[idx+1:] # append the sub-prompt and its weight prompts.append(prompt) weights.append(weight) else: # no : found if len(text) > 0: # there is still text though # take remainder as weight 1 prompts.append(text) weights.append(1.0) remaining = 0 return prompts, weights