""" Manage a cache of Stable Diffusion model files for fast switching. They are moved between GPU and CPU as necessary. If CPU memory falls below a preset minimum, the least recently used model will be cleared and loaded from disk when next needed. """ from __future__ import annotations import contextlib import gc import hashlib import io import os import re import sys import textwrap import time import warnings from enum import Enum from pathlib import Path from shutil import move, rmtree from typing import Any, Optional, Union, Callable import safetensors import safetensors.torch import torch import transformers from diffusers import AutoencoderKL from diffusers import logging as dlogging from huggingface_hub import scan_cache_dir from omegaconf import OmegaConf from omegaconf.dictconfig import DictConfig from picklescan.scanner import scan_file_path from ldm.invoke.devices import CPU_DEVICE from ldm.invoke.generator.diffusers_pipeline import StableDiffusionGeneratorPipeline from ldm.invoke.globals import Globals, global_cache_dir from ldm.util import ( ask_user, download_with_resume, instantiate_from_config, url_attachment_name, ) class SDLegacyType(Enum): V1 = 1 V1_INPAINT = 2 V2 = 3 V2_e = 4 V2_v = 5 UNKNOWN = 99 DEFAULT_MAX_MODELS = 2 VAE_TO_REPO_ID = { # hack, see note in convert_and_import() "vae-ft-mse-840000-ema-pruned": "stabilityai/sd-vae-ft-mse", } class ModelManager(object): def __init__( self, config: OmegaConf, device_type: torch.device = CPU_DEVICE, precision: str = "float16", max_loaded_models=DEFAULT_MAX_MODELS, sequential_offload=False, ): """ Initialize with the path to the models.yaml config file, the torch device type, and precision. The optional min_avail_mem argument specifies how much unused system (CPU) memory to preserve. The cache of models in RAM will grow until this value is approached. Default is 2G. """ # prevent nasty-looking CLIP log message transformers.logging.set_verbosity_error() self.config = config self.precision = precision self.device = torch.device(device_type) self.max_loaded_models = max_loaded_models self.models = {} self.stack = [] # this is an LRU FIFO self.current_model = None self.sequential_offload = sequential_offload def valid_model(self, model_name: str) -> bool: """ Given a model name, returns True if it is a valid identifier. """ return model_name in self.config def get_model(self, model_name: str): """ Given a model named identified in models.yaml, return the model object. If in RAM will load into GPU VRAM. If on disk, will load from there. """ if not self.valid_model(model_name): print( f'** "{model_name}" is not a known model name. Please check your models.yaml file' ) return self.current_model if self.current_model != model_name: if model_name not in self.models: # make room for a new one self._make_cache_room() self.offload_model(self.current_model) if model_name in self.models: requested_model = self.models[model_name]["model"] print(f">> Retrieving model {model_name} from system RAM cache") self.models[model_name]["model"] = self._model_from_cpu(requested_model) width = self.models[model_name]["width"] height = self.models[model_name]["height"] hash = self.models[model_name]["hash"] else: # we're about to load a new model, so potentially offload the least recently used one requested_model, width, height, hash = self._load_model(model_name) self.models[model_name] = { "model": requested_model, "width": width, "height": height, "hash": hash, } self.current_model = model_name self._push_newest_model(model_name) return { "model": requested_model, "width": width, "height": height, "hash": hash, } def default_model(self) -> str | None: """ Returns the name of the default model, or None if none is defined. """ for model_name in self.config: if self.config[model_name].get("default"): return model_name return list(self.config.keys())[0] # first one def set_default_model(self, model_name: str) -> None: """ Set the default model. The change will not take effect until you call model_manager.commit() """ assert model_name in self.model_names(), f"unknown model '{model_name}'" config = self.config for model in config: config[model].pop("default", None) config[model_name]["default"] = True def model_info(self, model_name: str) -> dict: """ Given a model name returns the OmegaConf (dict-like) object describing it. """ if model_name not in self.config: return None return self.config[model_name] def model_names(self) -> list[str]: """ Return a list consisting of all the names of models defined in models.yaml """ return list(self.config.keys()) def is_legacy(self, model_name: str) -> bool: """ Return true if this is a legacy (.ckpt) model """ # if we are converting legacy files automatically, then # there are no legacy ckpts! if Globals.ckpt_convert: return False info = self.model_info(model_name) if "weights" in info and info["weights"].endswith((".ckpt", ".safetensors")): return True return False def list_models(self) -> dict: """ Return a dict of models in the format: { model_name1: {'status': ('active'|'cached'|'not loaded'), 'description': description, 'format': ('ckpt'|'diffusers'|'vae'), }, model_name2: { etc } Please use model_manager.models() to get all the model names, model_manager.model_info('model-name') to get the stanza for the model named 'model-name', and model_manager.config to get the full OmegaConf object derived from models.yaml """ models = {} for name in sorted(self.config, key=str.casefold): stanza = self.config[name] # don't include VAEs in listing (legacy style) if "config" in stanza and "/VAE/" in stanza["config"]: continue models[name] = dict() format = stanza.get("format", "ckpt") # Determine Format # Common Attribs description = stanza.get("description", None) if self.current_model == name: status = "active" elif name in self.models: status = "cached" else: status = "not loaded" models[name].update( description=description, format=format, status=status, ) # Checkpoint Config Parse if format == "ckpt": models[name].update( config=str(stanza.get("config", None)), weights=str(stanza.get("weights", None)), vae=str(stanza.get("vae", None)), width=str(stanza.get("width", 512)), height=str(stanza.get("height", 512)), ) # Diffusers Config Parse if vae := stanza.get("vae", None): if isinstance(vae, DictConfig): vae = dict( repo_id=str(vae.get("repo_id", None)), path=str(vae.get("path", None)), subfolder=str(vae.get("subfolder", None)), ) if format == "diffusers": models[name].update( vae=vae, repo_id=str(stanza.get("repo_id", None)), path=str(stanza.get("path", None)), ) return models def print_models(self) -> None: """ Print a table of models, their descriptions, and load status """ models = self.list_models() for name in models: if models[name]["format"] == "vae": continue line = f'{name:25s} {models[name]["status"]:>10s} {models[name]["format"]:10s} {models[name]["description"]}' if models[name]["status"] == "active": line = f"\033[1m{line}\033[0m" print(line) def del_model(self, model_name: str, delete_files: bool = False) -> None: """ Delete the named model. """ omega = self.config if model_name not in omega: print(f"** Unknown model {model_name}") return # save these for use in deletion later conf = omega[model_name] repo_id = conf.get("repo_id", None) path = self._abs_path(conf.get("path", None)) weights = self._abs_path(conf.get("weights", None)) del omega[model_name] if model_name in self.stack: self.stack.remove(model_name) if delete_files: if weights: print(f"** Deleting file {weights}") Path(weights).unlink(missing_ok=True) elif path: print(f"** Deleting directory {path}") rmtree(path, ignore_errors=True) elif repo_id: print(f"** Deleting the cached model directory for {repo_id}") self._delete_model_from_cache(repo_id) def add_model( self, model_name: str, model_attributes: dict, clobber: bool = False ) -> None: """ Update the named model with a dictionary of attributes. Will fail with an assertion error if the name already exists. Pass clobber=True to overwrite. On a successful update, the config will be changed in memory and the method will return True. Will fail with an assertion error if provided attributes are incorrect or the model name is missing. """ omega = self.config assert "format" in model_attributes, 'missing required field "format"' if model_attributes["format"] == "diffusers": assert ( "description" in model_attributes ), 'required field "description" is missing' assert ( "path" in model_attributes or "repo_id" in model_attributes ), 'model must have either the "path" or "repo_id" fields defined' else: for field in ("description", "weights", "height", "width", "config"): assert field in model_attributes, f"required field {field} is missing" assert ( clobber or model_name not in omega ), f'attempt to overwrite existing model definition "{model_name}"' omega[model_name] = model_attributes if "weights" in omega[model_name]: omega[model_name]["weights"].replace("\\", "/") if clobber: self._invalidate_cached_model(model_name) def _load_model(self, model_name: str): """Load and initialize the model from configuration variables passed at object creation time""" if model_name not in self.config: print( f'"{model_name}" is not a known model name. Please check your models.yaml file' ) return mconfig = self.config[model_name] # for usage statistics if self._has_cuda(): torch.cuda.reset_peak_memory_stats() torch.cuda.empty_cache() tic = time.time() # this does the work model_format = mconfig.get("format", "ckpt") if model_format == "ckpt": weights = mconfig.weights print(f">> Loading {model_name} from {weights}") model, width, height, model_hash = self._load_ckpt_model( model_name, mconfig ) elif model_format == "diffusers": with warnings.catch_warnings(): warnings.simplefilter("ignore") model, width, height, model_hash = self._load_diffusers_model(mconfig) else: raise NotImplementedError( f"Unknown model format {model_name}: {model_format}" ) # usage statistics toc = time.time() print(">> Model loaded in", "%4.2fs" % (toc - tic)) if self._has_cuda(): print( ">> Max VRAM used to load the model:", "%4.2fG" % (torch.cuda.max_memory_allocated() / 1e9), "\n>> Current VRAM usage:" "%4.2fG" % (torch.cuda.memory_allocated() / 1e9), ) return model, width, height, model_hash def _load_ckpt_model(self, model_name, mconfig): config = mconfig.config weights = mconfig.weights vae = mconfig.get("vae") width = mconfig.width height = mconfig.height if not os.path.isabs(config): config = os.path.join(Globals.root, config) if not os.path.isabs(weights): weights = os.path.normpath(os.path.join(Globals.root, weights)) # if converting automatically to diffusers, then we do the conversion and return # a diffusers pipeline if Globals.ckpt_convert: print( f">> Converting legacy checkpoint {model_name} into a diffusers model..." ) from ldm.invoke.ckpt_to_diffuser import ( load_pipeline_from_original_stable_diffusion_ckpt, ) self.offload_model(self.current_model) if vae_config := self._choose_diffusers_vae(model_name): vae = self._load_vae(vae_config) if self._has_cuda(): torch.cuda.empty_cache() pipeline = load_pipeline_from_original_stable_diffusion_ckpt( checkpoint_path=weights, original_config_file=config, vae=vae, return_generator_pipeline=True, precision=torch.float16 if self.precision == "float16" else torch.float32, ) if self.sequential_offload: pipeline.enable_offload_submodels(self.device) else: pipeline.to(self.device) return ( pipeline, width, height, "NOHASH", ) # for usage statistics if self._has_cuda(): torch.cuda.reset_peak_memory_stats() torch.cuda.empty_cache() # this does the work if not os.path.isabs(config): config = os.path.join(Globals.root, config) omega_config = OmegaConf.load(config) with open(weights, "rb") as f: weight_bytes = f.read() model_hash = self._cached_sha256(weights, weight_bytes) sd = None if weights.endswith(".ckpt"): self.scan_model(model_name, weights) sd = torch.load(io.BytesIO(weight_bytes), map_location="cpu") else: sd = safetensors.torch.load(weight_bytes) del weight_bytes # merged models from auto11 merge board are flat for some reason if "state_dict" in sd: sd = sd["state_dict"] print(" | Forcing garbage collection prior to loading new model") gc.collect() model = instantiate_from_config(omega_config.model) model.load_state_dict(sd, strict=False) if self.precision == "float16": print(" | Using faster float16 precision") model = model.to(torch.float16) else: print(" | Using more accurate float32 precision") # look and load a matching vae file. Code borrowed from AUTOMATIC1111 modules/sd_models.py if vae: if not os.path.isabs(vae): vae = os.path.normpath(os.path.join(Globals.root, vae)) if os.path.exists(vae): print(f" | Loading VAE weights from: {vae}") if vae.endswith((".ckpt",".pt")): self.scan_model(vae,vae) vae_ckpt = torch.load(vae, map_location="cpu") else: vae_ckpt = safetensors.torch.load_file(vae) vae_dict = {k: v for k, v in vae_ckpt.items() if k[0:4] != "loss"} model.first_stage_model.load_state_dict(vae_dict, strict=False) else: print(f" | VAE file {vae} not found. Skipping.") model.to(self.device) # model.to doesn't change the cond_stage_model.device used to move the tokenizer output, so set it here model.cond_stage_model.device = self.device model.eval() for module in model.modules(): if isinstance(module, (torch.nn.Conv2d, torch.nn.ConvTranspose2d)): module._orig_padding_mode = module.padding_mode return model, width, height, model_hash def _load_diffusers_model(self, mconfig): name_or_path = self.model_name_or_path(mconfig) using_fp16 = self.precision == "float16" print(f">> Loading diffusers model from {name_or_path}") if using_fp16: print(" | Using faster float16 precision") else: print(" | Using more accurate float32 precision") # TODO: scan weights maybe? pipeline_args: dict[str, Any] = dict( safety_checker=None, local_files_only=not Globals.internet_available ) if "vae" in mconfig and mconfig["vae"] is not None: if vae := self._load_vae(mconfig["vae"]): pipeline_args.update(vae=vae) if not isinstance(name_or_path, Path): pipeline_args.update(cache_dir=global_cache_dir("hub")) if using_fp16: pipeline_args.update(torch_dtype=torch.float16) fp_args_list = [{"revision": "fp16"}, {}] else: fp_args_list = [{}] verbosity = dlogging.get_verbosity() dlogging.set_verbosity_error() pipeline = None for fp_args in fp_args_list: try: pipeline = StableDiffusionGeneratorPipeline.from_pretrained( name_or_path, **pipeline_args, **fp_args, ) except OSError as e: if str(e).startswith("fp16 is not a valid"): pass else: print( f"** An unexpected error occurred while downloading the model: {e})" ) if pipeline: break dlogging.set_verbosity(verbosity) assert pipeline is not None, OSError(f'"{name_or_path}" could not be loaded') if self.sequential_offload: pipeline.enable_offload_submodels(self.device) else: pipeline.to(self.device) model_hash = self._diffuser_sha256(name_or_path) # square images??? width = pipeline.unet.config.sample_size * pipeline.vae_scale_factor height = width print(f" | Default image dimensions = {width} x {height}") return pipeline, width, height, model_hash def model_name_or_path(self, model_name: Union[str, DictConfig]) -> str | Path: if isinstance(model_name, DictConfig) or isinstance(model_name, dict): mconfig = model_name elif model_name in self.config: mconfig = self.config[model_name] else: raise ValueError( f'"{model_name}" is not a known model name. Please check your models.yaml file' ) if "path" in mconfig and mconfig["path"] is not None: path = Path(mconfig["path"]) if not path.is_absolute(): path = Path(Globals.root, path).resolve() return path elif "repo_id" in mconfig: return mconfig["repo_id"] else: raise ValueError("Model config must specify either repo_id or path.") def offload_model(self, model_name: str) -> None: """ Offload the indicated model to CPU. Will call _make_cache_room() to free space if needed. """ if model_name not in self.models: return print(f">> Offloading {model_name} to CPU") model = self.models[model_name]["model"] self.models[model_name]["model"] = self._model_to_cpu(model) gc.collect() if self._has_cuda(): torch.cuda.empty_cache() @classmethod def scan_model(self, model_name, checkpoint): """ Apply picklescanner to the indicated checkpoint and issue a warning and option to exit if an infected file is identified. """ # scan model print(f" | Scanning Model: {model_name}") scan_result = scan_file_path(checkpoint) if scan_result.infected_files != 0: if scan_result.infected_files == 1: print(f"\n### Issues Found In Model: {scan_result.issues_count}") print( "### WARNING: The model you are trying to load seems to be infected." ) print("### For your safety, InvokeAI will not load this model.") print("### Please use checkpoints from trusted sources.") print("### Exiting InvokeAI") sys.exit() else: print( "\n### WARNING: InvokeAI was unable to scan the model you are using." ) model_safe_check_fail = ask_user( "Do you want to to continue loading the model?", ["y", "n"] ) if model_safe_check_fail.lower() != "y": print("### Exiting InvokeAI") sys.exit() else: print(" | Model scanned ok") def import_diffuser_model( self, repo_or_path: Union[str, Path], model_name: str = None, description: str = None, vae: dict = None, commit_to_conf: Path = None, ) -> bool: """ Attempts to install the indicated diffuser model and returns True if successful. "repo_or_path" can be either a repo-id or a path-like object corresponding to the top of a downloaded diffusers directory. You can optionally provide a model name and/or description. If not provided, then these will be derived from the repo name. If you provide a commit_to_conf path to the configuration file, then the new entry will be committed to the models.yaml file. """ model_name = model_name or Path(repo_or_path).stem model_description = description or f"Imported diffusers model {model_name}" new_config = dict( description=model_description, vae=vae, format="diffusers", ) if isinstance(repo_or_path, Path) and repo_or_path.exists(): new_config.update(path=str(repo_or_path)) else: new_config.update(repo_id=repo_or_path) self.add_model(model_name, new_config, True) if commit_to_conf: self.commit(commit_to_conf) return model_name def import_ckpt_model( self, weights: Union[str, Path], config: Union[str, Path] = "configs/stable-diffusion/v1-inference.yaml", vae: Union[str, Path] = None, model_name: str = None, model_description: str = None, commit_to_conf: Path = None, ) -> str: """ Attempts to install the indicated ckpt file and returns True if successful. "weights" can be either a path-like object corresponding to a local .ckpt file or a http/https URL pointing to a remote model. "vae" is a Path or str object pointing to a ckpt or safetensors file to be used as the VAE for this model. "config" is the model config file to use with this ckpt file. It defaults to v1-inference.yaml. If a URL is provided, the config will be downloaded. You can optionally provide a model name and/or description. If not provided, then these will be derived from the weight file name. If you provide a commit_to_conf path to the configuration file, then the new entry will be committed to the models.yaml file. Return value is the name of the imported file, or None if an error occurred. """ if str(weights).startswith(("http:", "https:")): model_name = model_name or url_attachment_name(weights) weights_path = self._resolve_path(weights, "models/ldm/stable-diffusion-v1") config_path = self._resolve_path(config, "configs/stable-diffusion") if weights_path is None or not weights_path.exists(): return if config_path is None or not config_path.exists(): return model_name = ( model_name or Path(weights).stem ) # note this gives ugly pathnames if used on a URL without a Content-Disposition header model_description = ( model_description or f"Imported stable diffusion weights file {model_name}" ) new_config = dict( weights=str(weights_path), config=str(config_path), description=model_description, format="ckpt", width=512, height=512, ) if vae: new_config["vae"] = vae self.add_model(model_name, new_config, True) if commit_to_conf: self.commit(commit_to_conf) return model_name @classmethod def probe_model_type(self, checkpoint: dict) -> SDLegacyType: """ Given a pickle or safetensors model object, probes contents of the object and returns an SDLegacyType indicating its format. Valid return values include: SDLegacyType.V1 SDLegacyType.V1_INPAINT SDLegacyType.V2 (V2 prediction type unknown) SDLegacyType.V2_e (V2 using 'epsilon' prediction type) SDLegacyType.V2_v (V2 using 'v_prediction' prediction type) SDLegacyType.UNKNOWN """ global_step = checkpoint.get('global_step') state_dict = checkpoint.get("state_dict") or checkpoint try: state_dict = checkpoint.get("state_dict") or checkpoint key_name = "model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_k.weight" if key_name in state_dict and state_dict[key_name].shape[-1] == 1024: if global_step == 220000: return SDLegacyType.V2_e elif global_step == 110000: return SDLegacyType.V2_v else: return SDLegacyType.V2 # otherwise we assume a V1 file in_channels = state_dict[ "model.diffusion_model.input_blocks.0.0.weight" ].shape[1] if in_channels == 9: return SDLegacyType.V1_INPAINT elif in_channels == 4: return SDLegacyType.V1 else: return SDLegacyType.UNKNOWN except KeyError: return SDLegacyType.UNKNOWN def heuristic_import( self, path_url_or_repo: str, convert: bool = False, model_name: str = None, description: str = None, model_config_file: Path = None, commit_to_conf: Path = None, config_file_callback: Callable[[Path],Path] = None, ) -> str: """ Accept a string which could be: - a HF diffusers repo_id - a URL pointing to a legacy .ckpt or .safetensors file - a local path pointing to a legacy .ckpt or .safetensors file - a local directory containing .ckpt and .safetensors files - a local directory containing a diffusers model After determining the nature of the model and downloading it (if necessary), the file is probed to determine the correct configuration file (if needed) and it is imported. The model_name and/or description can be provided. If not, they will be generated automatically. If convert is true, legacy models will be converted to diffusers before importing. If commit_to_conf is provided, the newly loaded model will be written to the `models.yaml` file at the indicated path. Otherwise, the changes will only remain in memory. The (potentially derived) name of the model is returned on success, or None on failure. When multiple models are added from a directory, only the last imported one is returned. """ model_path: Path = None thing = path_url_or_repo # to save typing is_temporary = False print(f">> Probing {thing} for import") if thing.startswith(("http:", "https:", "ftp:")): print(f" | {thing} appears to be a URL") model_path = self._resolve_path( thing, "models/ldm/stable-diffusion-v1" ) # _resolve_path does a download if needed is_temporary = True elif Path(thing).is_file() and thing.endswith((".ckpt", ".safetensors")): if Path(thing).stem in ["model", "diffusion_pytorch_model"]: print( f" | {Path(thing).name} appears to be part of a diffusers model. Skipping import" ) return else: print(f" | {thing} appears to be a checkpoint file on disk") model_path = self._resolve_path(thing, "models/ldm/stable-diffusion-v1") elif Path(thing).is_dir() and Path(thing, "model_index.json").exists(): print(f" | {thing} appears to be a diffusers file on disk") model_name = self.import_diffuser_model( thing, vae=dict(repo_id="stabilityai/sd-vae-ft-mse"), model_name=model_name, description=description, commit_to_conf=commit_to_conf, ) elif Path(thing).is_dir(): if (Path(thing) / "model_index.json").exists(): print(f" | {thing} appears to be a diffusers model.") model_name = self.import_diffuser_model( thing, commit_to_conf=commit_to_conf ) else: print( f" |{thing} appears to be a directory. Will scan for models to import" ) for m in list(Path(thing).rglob("*.ckpt")) + list( Path(thing).rglob("*.safetensors") ): if model_name := self.heuristic_import( str(m), convert, commit_to_conf=commit_to_conf, config_file_callback=config_file_callback, ): print(f" >> {model_name} successfully imported") return model_name elif re.match(r"^[\w.+-]+/[\w.+-]+$", thing): print(f" | {thing} appears to be a HuggingFace diffusers repo_id") model_name = self.import_diffuser_model( thing, commit_to_conf=commit_to_conf ) pipeline, _, _, _ = self._load_diffusers_model(self.config[model_name]) return model_name else: print( f"** {thing}: Unknown thing. Please provide a URL, file path, directory or HuggingFace repo_id" ) # Model_path is set in the event of a legacy checkpoint file. # If not set, we're all done if not model_path: return if model_path.stem in self.config: # already imported print(" | Already imported. Skipping") return model_path.stem # another round of heuristics to guess the correct config file. checkpoint = None if model_path.suffix.endswith((".ckpt",".pt")): self.scan_model(model_path,model_path) checkpoint = torch.load(model_path) else: checkpoint = safetensors.torch.load_file(model_path) # additional probing needed if no config file provided if model_config_file is None: model_type = self.probe_model_type(checkpoint) if model_type == SDLegacyType.V1: print(" | SD-v1 model detected") model_config_file = Path( Globals.root, "configs/stable-diffusion/v1-inference.yaml" ) elif model_type == SDLegacyType.V1_INPAINT: print(" | SD-v1 inpainting model detected") model_config_file = Path( Globals.root, "configs/stable-diffusion/v1-inpainting-inference.yaml" ) elif model_type == SDLegacyType.V2_v: print( " | SD-v2-v model detected" ) model_config_file = Path( Globals.root, "configs/stable-diffusion/v2-inference-v.yaml" ) elif model_type == SDLegacyType.V2_e: print( " | SD-v2-e model detected" ) model_config_file = Path( Globals.root, "configs/stable-diffusion/v2-inference.yaml" ) elif model_type == SDLegacyType.V2: print( f"** {thing} is a V2 checkpoint file, but its parameterization cannot be determined. Please provide configuration file path." ) else: print( f"** {thing} is a legacy checkpoint file but not a known Stable Diffusion model. Please provide configuration file path." ) if not model_config_file and config_file_callback: model_config_file = config_file_callback(model_path) if not model_config_file: return if model_config_file.name.startswith('v2'): convert = True print( " | This SD-v2 model will be converted to diffusers format for use" ) if convert: diffuser_path = Path( Globals.root, "models", Globals.converted_ckpts_dir, model_path.stem ) model_name = self.convert_and_import( model_path, diffusers_path=diffuser_path, vae=dict(repo_id="stabilityai/sd-vae-ft-mse"), model_name=model_name, model_description=description, original_config_file=model_config_file, commit_to_conf=commit_to_conf, scan_needed=False, ) # in the event that this file was downloaded automatically prior to conversion # we do not keep the original .ckpt/.safetensors around if is_temporary: model_path.unlink(missing_ok=True) else: model_name = self.import_ckpt_model( model_path, config=model_config_file, model_name=model_name, model_description=description, vae=str( Path( Globals.root, "models/ldm/stable-diffusion-v1/vae-ft-mse-840000-ema-pruned.ckpt", ) ), commit_to_conf=commit_to_conf, ) if commit_to_conf: self.commit(commit_to_conf) return model_name def convert_and_import( self, ckpt_path: Path, diffusers_path: Path, model_name=None, model_description=None, vae=None, original_config_file: Path = None, commit_to_conf: Path = None, scan_needed: bool=True, ) -> str: """ Convert a legacy ckpt weights file to diffuser model and import into models.yaml. """ ckpt_path = self._resolve_path(ckpt_path, "models/ldm/stable-diffusion-v1") if original_config_file: original_config_file = self._resolve_path( original_config_file, "configs/stable-diffusion" ) new_config = None from ldm.invoke.ckpt_to_diffuser import convert_ckpt_to_diffuser if diffusers_path.exists(): print( f"ERROR: The path {str(diffusers_path)} already exists. Please move or remove it and try again." ) return model_name = model_name or diffusers_path.name model_description = model_description or f"Optimized version of {model_name}" print(f">> Optimizing {model_name} (30-60s)") try: # By passing the specified VAE to the conversion function, the autoencoder # will be built into the model rather than tacked on afterward via the config file vae_model = self._load_vae(vae) if vae else None convert_ckpt_to_diffuser( ckpt_path, diffusers_path, extract_ema=True, original_config_file=original_config_file, vae=vae_model, scan_needed=scan_needed, ) print( f" | Success. Optimized model is now located at {str(diffusers_path)}" ) print(f" | Writing new config file entry for {model_name}") new_config = dict( path=str(diffusers_path), description=model_description, format="diffusers", ) if model_name in self.config: self.del_model(model_name) self.add_model(model_name, new_config, True) if commit_to_conf: self.commit(commit_to_conf) print(">> Conversion succeeded") except Exception as e: print(f"** Conversion failed: {str(e)}") print( "** If you are trying to convert an inpainting or 2.X model, please indicate the correct config file (e.g. v1-inpainting-inference.yaml)" ) return model_name def search_models(self, search_folder): print(f">> Finding Models In: {search_folder}") models_folder_ckpt = Path(search_folder).glob("**/*.ckpt") models_folder_safetensors = Path(search_folder).glob("**/*.safetensors") ckpt_files = [x for x in models_folder_ckpt if x.is_file()] safetensor_files = [x for x in models_folder_safetensors if x.is_file()] files = ckpt_files + safetensor_files found_models = [] for file in files: location = str(file.resolve()).replace("\\", "/") if ( "model.safetensors" not in location and "diffusion_pytorch_model.safetensors" not in location ): found_models.append({"name": file.stem, "location": location}) return search_folder, found_models def _choose_diffusers_vae( self, model_name: str, vae: str = None ) -> Union[dict, str]: # In the event that the original entry is using a custom ckpt VAE, we try to # map that VAE onto a diffuser VAE using a hard-coded dictionary. # I would prefer to do this differently: We load the ckpt model into memory, swap the # VAE in memory, and then pass that to convert_ckpt_to_diffuser() so that the swapped # VAE is built into the model. However, when I tried this I got obscure key errors. if vae: return vae if model_name in self.config and ( vae_ckpt_path := self.model_info(model_name).get("vae", None) ): vae_basename = Path(vae_ckpt_path).stem diffusers_vae = None if diffusers_vae := VAE_TO_REPO_ID.get(vae_basename, None): print( f">> {vae_basename} VAE corresponds to known {diffusers_vae} diffusers version" ) vae = {"repo_id": diffusers_vae} else: print( f'** Custom VAE "{vae_basename}" found, but corresponding diffusers model unknown' ) print( '** Using "stabilityai/sd-vae-ft-mse"; If this isn\'t right, please edit the model config' ) vae = {"repo_id": "stabilityai/sd-vae-ft-mse"} return vae def _make_cache_room(self) -> None: num_loaded_models = len(self.models) if num_loaded_models >= self.max_loaded_models: least_recent_model = self._pop_oldest_model() print( f">> Cache limit (max={self.max_loaded_models}) reached. Purging {least_recent_model}" ) if least_recent_model is not None: del self.models[least_recent_model] gc.collect() def print_vram_usage(self) -> None: if self._has_cuda: print( ">> Current VRAM usage: ", "%4.2fG" % (torch.cuda.memory_allocated() / 1e9), ) def commit(self, config_file_path: str) -> None: """ Write current configuration out to the indicated file. """ yaml_str = OmegaConf.to_yaml(self.config) if not os.path.isabs(config_file_path): config_file_path = os.path.normpath( os.path.join(Globals.root, config_file_path) ) tmpfile = os.path.join(os.path.dirname(config_file_path), "new_config.tmp") with open(tmpfile, "w", encoding="utf-8") as outfile: outfile.write(self.preamble()) outfile.write(yaml_str) os.replace(tmpfile, config_file_path) def preamble(self) -> str: """ Returns the preamble for the config file. """ return textwrap.dedent( """\ # This file describes the alternative machine learning models # available to InvokeAI script. # # To add a new model, follow the examples below. Each # model requires a model config file, a weights file, # and the width and height of the images it # was trained on. """ ) @classmethod def migrate_models(cls): """ Migrate the ~/invokeai/models directory from the legacy format used through 2.2.5 to the 2.3.0 "diffusers" version. This should be a one-time operation, called at script startup time. """ # Three transformer models to check: bert, clip and safety checker, and # the diffusers as well models_dir = Path(Globals.root, "models") legacy_locations = [ Path( models_dir, "CompVis/stable-diffusion-safety-checker/models--CompVis--stable-diffusion-safety-checker" ), Path("bert-base-uncased/models--bert-base-uncased"), Path( "openai/clip-vit-large-patch14/models--openai--clip-vit-large-patch14" ), ] legacy_locations.extend(list(global_cache_dir("diffusers").glob('*'))) legacy_layout = False for model in legacy_locations: legacy_layout = legacy_layout or model.exists() if not legacy_layout: return print( """ >> ALERT: >> The location of your previously-installed diffusers models needs to move from >> invokeai/models/diffusers to invokeai/models/hub due to a change introduced by >> diffusers version 0.14. InvokeAI will now move all models from the "diffusers" directory >> into "hub" and then remove the diffusers directory. This is a quick, safe, one-time >> operation. However if you have customized either of these directories and need to >> make adjustments, please press ctrl-C now to abort and relaunch InvokeAI when you are ready. >> Otherwise press to continue.""" ) print("** This is a quick one-time operation.") input("continue> ") # transformer files get moved into the hub directory if cls._is_huggingface_hub_directory_present(): hub = global_cache_dir("hub") else: hub = models_dir / "hub" os.makedirs(hub, exist_ok=True) for model in legacy_locations: source = models_dir / model dest = hub / model.stem if dest.exists() and not source.exists(): continue print(f"** {source} => {dest}") if source.exists(): if dest.is_symlink(): print(f"** Found symlink at {dest.name}. Not migrating.") elif dest.exists(): if source.is_dir(): rmtree(source) else: source.unlink() else: move(source, dest) # now clean up by removing any empty directories empty = [ root for root, dirs, files, in os.walk(models_dir) if not len(dirs) and not len(files) ] for d in empty: os.rmdir(d) print("** Migration is done. Continuing...") def _resolve_path( self, source: Union[str, Path], dest_directory: str ) -> Optional[Path]: resolved_path = None if str(source).startswith(("http:", "https:", "ftp:")): dest_directory = Path(dest_directory) if not dest_directory.is_absolute(): dest_directory = Globals.root / dest_directory dest_directory.mkdir(parents=True, exist_ok=True) resolved_path = download_with_resume(str(source), dest_directory) else: if not os.path.isabs(source): source = os.path.join(Globals.root, source) resolved_path = Path(source) return resolved_path def _invalidate_cached_model(self, model_name: str) -> None: self.offload_model(model_name) if model_name in self.stack: self.stack.remove(model_name) self.models.pop(model_name, None) def _model_to_cpu(self, model): if self.device == CPU_DEVICE: return model if isinstance(model, StableDiffusionGeneratorPipeline): model.offload_all() return model model.cond_stage_model.device = CPU_DEVICE model.to(CPU_DEVICE) for submodel in ("first_stage_model", "cond_stage_model", "model"): try: getattr(model, submodel).to(CPU_DEVICE) except AttributeError: pass return model def _model_from_cpu(self, model): if self.device == CPU_DEVICE: return model if isinstance(model, StableDiffusionGeneratorPipeline): model.ready() return model model.to(self.device) model.cond_stage_model.device = self.device for submodel in ("first_stage_model", "cond_stage_model", "model"): try: getattr(model, submodel).to(self.device) except AttributeError: pass return model def _pop_oldest_model(self): """ Remove the first element of the FIFO, which ought to be the least recently accessed model. Do not pop the last one, because it is in active use! """ return self.stack.pop(0) def _push_newest_model(self, model_name: str) -> None: """ Maintain a simple FIFO. First element is always the least recent, and last element is always the most recent. """ with contextlib.suppress(ValueError): self.stack.remove(model_name) self.stack.append(model_name) def _has_cuda(self) -> bool: return self.device.type == "cuda" def _diffuser_sha256( self, name_or_path: Union[str, Path], chunksize=4096 ) -> Union[str, bytes]: path = None if isinstance(name_or_path, Path): path = name_or_path else: owner, repo = name_or_path.split("/") path = Path(global_cache_dir("hub") / f"models--{owner}--{repo}") if not path.exists(): return None hashpath = path / "checksum.sha256" if hashpath.exists() and path.stat().st_mtime <= hashpath.stat().st_mtime: with open(hashpath) as f: hash = f.read() return hash print(" | Calculating sha256 hash of model files") tic = time.time() sha = hashlib.sha256() count = 0 for root, dirs, files in os.walk(path, followlinks=False): for name in files: count += 1 with open(os.path.join(root, name), "rb") as f: while chunk := f.read(chunksize): sha.update(chunk) hash = sha.hexdigest() toc = time.time() print(f" | sha256 = {hash} ({count} files hashed in", "%4.2fs)" % (toc - tic)) with open(hashpath, "w") as f: f.write(hash) return hash def _cached_sha256(self, path, data) -> Union[str, bytes]: dirname = os.path.dirname(path) basename = os.path.basename(path) base, _ = os.path.splitext(basename) hashpath = os.path.join(dirname, base + ".sha256") if os.path.exists(hashpath) and os.path.getmtime(path) <= os.path.getmtime( hashpath ): with open(hashpath) as f: hash = f.read() return hash print(" | Calculating sha256 hash of weights file") tic = time.time() sha = hashlib.sha256() sha.update(data) hash = sha.hexdigest() toc = time.time() print(f">> sha256 = {hash}", "(%4.2fs)" % (toc - tic)) with open(hashpath, "w") as f: f.write(hash) return hash def _load_vae(self, vae_config) -> AutoencoderKL: vae_args = {} try: name_or_path = self.model_name_or_path(vae_config) except Exception: return None if name_or_path is None: return None using_fp16 = self.precision == "float16" vae_args.update( cache_dir=global_cache_dir("hug"), local_files_only=not Globals.internet_available, ) print(f" | Loading diffusers VAE from {name_or_path}") if using_fp16: vae_args.update(torch_dtype=torch.float16) fp_args_list = [{"revision": "fp16"}, {}] else: print(" | Using more accurate float32 precision") fp_args_list = [{}] vae = None deferred_error = None # A VAE may be in a subfolder of a model's repository. if "subfolder" in vae_config: vae_args["subfolder"] = vae_config["subfolder"] for fp_args in fp_args_list: # At some point we might need to be able to use different classes here? But for now I think # all Stable Diffusion VAE are AutoencoderKL. try: vae = AutoencoderKL.from_pretrained(name_or_path, **vae_args, **fp_args) except OSError as e: if str(e).startswith("fp16 is not a valid"): pass else: deferred_error = e if vae: break if not vae and deferred_error: print(f"** Could not load VAE {name_or_path}: {str(deferred_error)}") return vae @staticmethod def _delete_model_from_cache(repo_id): cache_info = scan_cache_dir(global_cache_dir("diffusers")) # I'm sure there is a way to do this with comprehensions # but the code quickly became incomprehensible! hashes_to_delete = set() for repo in cache_info.repos: if repo.repo_id == repo_id: for revision in repo.revisions: hashes_to_delete.add(revision.commit_hash) strategy = cache_info.delete_revisions(*hashes_to_delete) print( f"** Deletion of this model is expected to free {strategy.expected_freed_size_str}" ) strategy.execute() @staticmethod def _abs_path(path: str | Path) -> Path: if path is None or Path(path).is_absolute(): return path return Path(Globals.root, path).resolve() @staticmethod def _is_huggingface_hub_directory_present() -> bool: return ( os.getenv("HF_HOME") is not None or os.getenv("XDG_CACHE_HOME") is not None )