# Copyright (c) 2023 Lincoln Stein (https://github.com/lstein) and the InvokeAI Development Team """Invokeai configuration system. Arguments and fields are taken from the pydantic definition of the model. Defaults can be set by creating a yaml configuration file that has a top-level key of "InvokeAI" and subheadings for each of the categories returned by `invokeai --help`. The file looks like this: [file: invokeai.yaml] InvokeAI: Paths: root: /home/lstein/invokeai-main conf_path: configs/models.yaml legacy_conf_dir: configs/stable-diffusion outdir: outputs autoimport_dir: null Models: model: stable-diffusion-1.5 embeddings: true Memory/Performance: xformers_enabled: false sequential_guidance: false precision: float16 max_cache_size: 6 max_vram_cache_size: 0.5 always_use_cpu: false free_gpu_mem: false Features: esrgan: true patchmatch: true internet_available: true log_tokenization: false Web Server: host: 127.0.0.1 port: 8081 allow_origins: [] allow_credentials: true allow_methods: - '*' allow_headers: - '*' The default name of the configuration file is `invokeai.yaml`, located in INVOKEAI_ROOT. You can replace supersede this by providing any OmegaConf dictionary object initialization time: omegaconf = OmegaConf.load('/tmp/init.yaml') conf = InvokeAIAppConfig() conf.parse_args(conf=omegaconf) InvokeAIAppConfig.parse_args() will parse the contents of `sys.argv` at initialization time. You may pass a list of strings in the optional `argv` argument to use instead of the system argv: conf.parse_args(argv=['--xformers_enabled']) It is also possible to set a value at initialization time. However, if you call parse_args() it may be overwritten. conf = InvokeAIAppConfig(xformers_enabled=True) conf.parse_args(argv=['--no-xformers']) conf.xformers_enabled # False To avoid this, use `get_config()` to retrieve the application-wide configuration object. This will retain any properties set at object creation time: conf = InvokeAIAppConfig.get_config(xformers_enabled=True) conf.parse_args(argv=['--no-xformers']) conf.xformers_enabled # True Any setting can be overwritten by setting an environment variable of form: "INVOKEAI_", as in: export INVOKEAI_port=8080 Order of precedence (from highest): 1) initialization options 2) command line options 3) environment variable options 4) config file options 5) pydantic defaults Typical usage at the top level file: from invokeai.app.services.config import InvokeAIAppConfig # get global configuration and print its cache size conf = InvokeAIAppConfig.get_config() conf.parse_args() print(conf.max_cache_size) Typical usage in a backend module: from invokeai.app.services.config import InvokeAIAppConfig # get global configuration and print its cache size value conf = InvokeAIAppConfig.get_config() print(conf.max_cache_size) Computed properties: The InvokeAIAppConfig object has a series of properties that resolve paths relative to the runtime root directory. They each return a Path object: root_path - path to InvokeAI root output_path - path to default outputs directory model_conf_path - path to models.yaml conf - alias for the above embedding_path - path to the embeddings directory lora_path - path to the LoRA directory In most cases, you will want to create a single InvokeAIAppConfig object for the entire application. The InvokeAIAppConfig.get_config() function does this: config = InvokeAIAppConfig.get_config() config.parse_args() # read values from the command line/config file print(config.root) # Subclassing If you wish to create a similar class, please subclass the `InvokeAISettings` class and define a Literal field named "type", which is set to the desired top-level name. For example, to create a "InvokeBatch" configuration, define like this: class InvokeBatch(InvokeAISettings): type: Literal["InvokeBatch"] = "InvokeBatch" node_count : int = Field(default=1, description="Number of nodes to run on", category='Resources') cpu_count : int = Field(default=8, description="Number of GPUs to run on per node", category='Resources') This will now read and write from the "InvokeBatch" section of the config file, look for environment variables named INVOKEBATCH_*, and accept the command-line arguments `--node_count` and `--cpu_count`. The two configs are kept in separate sections of the config file: # invokeai.yaml InvokeBatch: Resources: node_count: 1 cpu_count: 8 InvokeAI: Paths: root: /home/lstein/invokeai-main conf_path: configs/models.yaml legacy_conf_dir: configs/stable-diffusion outdir: outputs ... """ from __future__ import annotations import argparse import pydoc import os import sys from argparse import ArgumentParser from omegaconf import OmegaConf, DictConfig, ListConfig from pathlib import Path from pydantic import BaseSettings, Field, parse_obj_as from typing import ClassVar, Dict, List, Literal, Union, get_origin, get_type_hints, get_args INIT_FILE = Path("invokeai.yaml") DB_FILE = Path("invokeai.db") LEGACY_INIT_FILE = Path("invokeai.init") DEFAULT_MAX_VRAM = 0.5 class InvokeAISettings(BaseSettings): """ Runtime configuration settings in which default values are read from an omegaconf .yaml file. """ initconf: ClassVar[DictConfig] = None argparse_groups: ClassVar[Dict] = {} def parse_args(self, argv: list = sys.argv[1:]): parser = self.get_parser() opt = parser.parse_args(argv) for name in self.__fields__: if name not in self._excluded(): value = getattr(opt, name) if isinstance(value, ListConfig): value = list(value) elif isinstance(value, DictConfig): value = dict(value) setattr(self, name, value) def to_yaml(self) -> str: """ Return a YAML string representing our settings. This can be used as the contents of `invokeai.yaml` to restore settings later. """ cls = self.__class__ type = get_args(get_type_hints(cls)["type"])[0] field_dict = dict({type: dict()}) for name, field in self.__fields__.items(): if name in cls._excluded_from_yaml(): continue category = field.field_info.extra.get("category") or "Uncategorized" value = getattr(self, name) if category not in field_dict[type]: field_dict[type][category] = dict() # keep paths as strings to make it easier to read field_dict[type][category][name] = str(value) if isinstance(value, Path) else value conf = OmegaConf.create(field_dict) return OmegaConf.to_yaml(conf) @classmethod def add_parser_arguments(cls, parser): if "type" in get_type_hints(cls): settings_stanza = get_args(get_type_hints(cls)["type"])[0] else: settings_stanza = "Uncategorized" env_prefix = cls.Config.env_prefix if hasattr(cls.Config, "env_prefix") else settings_stanza.upper() initconf = ( cls.initconf.get(settings_stanza) if cls.initconf and settings_stanza in cls.initconf else OmegaConf.create() ) # create an upcase version of the environment in # order to achieve case-insensitive environment # variables (the way Windows does) upcase_environ = dict() for key, value in os.environ.items(): upcase_environ[key.upper()] = value fields = cls.__fields__ cls.argparse_groups = {} for name, field in fields.items(): if name not in cls._excluded(): current_default = field.default category = field.field_info.extra.get("category", "Uncategorized") env_name = env_prefix + "_" + name if category in initconf and name in initconf.get(category): field.default = initconf.get(category).get(name) if env_name.upper() in upcase_environ: field.default = upcase_environ[env_name.upper()] cls.add_field_argument(parser, name, field) field.default = current_default @classmethod def cmd_name(self, command_field: str = "type") -> str: hints = get_type_hints(self) if command_field in hints: return get_args(hints[command_field])[0] else: return "Uncategorized" @classmethod def get_parser(cls) -> ArgumentParser: parser = PagingArgumentParser( prog=cls.cmd_name(), description=cls.__doc__, ) cls.add_parser_arguments(parser) return parser @classmethod def add_subparser(cls, parser: argparse.ArgumentParser): parser.add_parser(cls.cmd_name(), help=cls.__doc__) @classmethod def _excluded(self) -> List[str]: # internal fields that shouldn't be exposed as command line options return ["type", "initconf"] @classmethod def _excluded_from_yaml(self) -> List[str]: # combination of deprecated parameters and internal ones that shouldn't be exposed as invokeai.yaml options return [ "type", "initconf", "version", "from_file", "model", "root", ] class Config: env_file_encoding = "utf-8" arbitrary_types_allowed = True case_sensitive = True @classmethod def add_field_argument(cls, command_parser, name: str, field, default_override=None): field_type = get_type_hints(cls).get(name) default = ( default_override if default_override is not None else field.default if field.default_factory is None else field.default_factory() ) if category := field.field_info.extra.get("category"): if category not in cls.argparse_groups: cls.argparse_groups[category] = command_parser.add_argument_group(category) argparse_group = cls.argparse_groups[category] else: argparse_group = command_parser if get_origin(field_type) == Literal: allowed_values = get_args(field.type_) allowed_types = set() for val in allowed_values: allowed_types.add(type(val)) allowed_types_list = list(allowed_types) field_type = allowed_types_list[0] if len(allowed_types) == 1 else Union[allowed_types_list] # type: ignore argparse_group.add_argument( f"--{name}", dest=name, type=field_type, default=default, choices=allowed_values, help=field.field_info.description, ) elif get_origin(field_type) == list: argparse_group.add_argument( f"--{name}", dest=name, nargs="*", type=field.type_, default=default, action=argparse.BooleanOptionalAction if field.type_ == bool else "store", help=field.field_info.description, ) else: argparse_group.add_argument( f"--{name}", dest=name, type=field.type_, default=default, action=argparse.BooleanOptionalAction if field.type_ == bool else "store", help=field.field_info.description, ) def _find_root() -> Path: venv = Path(os.environ.get("VIRTUAL_ENV") or ".") if os.environ.get("INVOKEAI_ROOT"): root = Path(os.environ["INVOKEAI_ROOT"]) elif any([(venv.parent / x).exists() for x in [INIT_FILE, LEGACY_INIT_FILE]]): root = (venv.parent).resolve() else: root = Path("~/invokeai").expanduser().resolve() return root class InvokeAIAppConfig(InvokeAISettings): """ Generate images using Stable Diffusion. Use "invokeai" to launch the command-line client (recommended for experts only), or "invokeai-web" to launch the web server. Global options can be changed by editing the file "INVOKEAI_ROOT/invokeai.yaml" or by setting environment variables INVOKEAI_. """ singleton_config: ClassVar[InvokeAIAppConfig] = None singleton_init: ClassVar[Dict] = None # fmt: off type: Literal["InvokeAI"] = "InvokeAI" host : str = Field(default="127.0.0.1", description="IP address to bind to", category='Web Server') port : int = Field(default=9090, description="Port to bind to", category='Web Server') allow_origins : List[str] = Field(default=[], description="Allowed CORS origins", category='Web Server') allow_credentials : bool = Field(default=True, description="Allow CORS credentials", category='Web Server') allow_methods : List[str] = Field(default=["*"], description="Methods allowed for CORS", category='Web Server') allow_headers : List[str] = Field(default=["*"], description="Headers allowed for CORS", category='Web Server') esrgan : bool = Field(default=True, description="Enable/disable upscaling code", category='Features') internet_available : bool = Field(default=True, description="If true, attempt to download models on the fly; otherwise only use local models", category='Features') log_tokenization : bool = Field(default=False, description="Enable logging of parsed prompt tokens.", category='Features') patchmatch : bool = Field(default=True, description="Enable/disable patchmatch inpaint code", category='Features') always_use_cpu : bool = Field(default=False, description="If true, use the CPU for rendering even if a GPU is available.", category='Memory/Performance') free_gpu_mem : bool = Field(default=False, description="If true, purge model from GPU after each generation.", category='Memory/Performance') max_cache_size : float = Field(default=6.0, gt=0, description="Maximum memory amount used by model cache for rapid switching", category='Memory/Performance') max_vram_cache_size : float = Field(default=2.75, ge=0, description="Amount of VRAM reserved for model storage", category='Memory/Performance') precision : Literal['auto', 'float16', 'float32', 'autocast'] = Field(default='auto', description='Floating point precision', category='Memory/Performance') sequential_guidance : bool = Field(default=False, description="Whether to calculate guidance in serial instead of in parallel, lowering memory requirements", category='Memory/Performance') xformers_enabled : bool = Field(default=True, description="Enable/disable memory-efficient attention", category='Memory/Performance') tiled_decode : bool = Field(default=False, description="Whether to enable tiled VAE decode (reduces memory consumption with some performance penalty)", category='Memory/Performance') root : Path = Field(default=None, description='InvokeAI runtime root directory', category='Paths') autoimport_dir : Path = Field(default='autoimport', description='Path to a directory of models files to be imported on startup.', category='Paths') lora_dir : Path = Field(default=None, description='Path to a directory of LoRA/LyCORIS models to be imported on startup.', category='Paths') embedding_dir : Path = Field(default=None, description='Path to a directory of Textual Inversion embeddings to be imported on startup.', category='Paths') controlnet_dir : Path = Field(default=None, description='Path to a directory of ControlNet embeddings to be imported on startup.', category='Paths') conf_path : Path = Field(default='configs/models.yaml', description='Path to models definition file', category='Paths') models_dir : Path = Field(default='models', description='Path to the models directory', category='Paths') legacy_conf_dir : Path = Field(default='configs/stable-diffusion', description='Path to directory of legacy checkpoint config files', category='Paths') db_dir : Path = Field(default='databases', description='Path to InvokeAI databases directory', category='Paths') outdir : Path = Field(default='outputs', description='Default folder for output images', category='Paths') from_file : Path = Field(default=None, description='Take command input from the indicated file (command-line client only)', category='Paths') use_memory_db : bool = Field(default=False, description='Use in-memory database for storing image metadata', category='Paths') ignore_missing_core_models : bool = Field(default=False, description='Ignore missing models in models/core/convert', category='Features') log_handlers : List[str] = Field(default=["console"], description='Log handler. Valid options are "console", "file=", "syslog=path|address:host:port", "http="', category="Logging") # note - would be better to read the log_format values from logging.py, but this creates circular dependencies issues log_format : Literal['plain', 'color', 'syslog', 'legacy'] = Field(default="color", description='Log format. Use "plain" for text-only, "color" for colorized output, "legacy" for 2.3-style logging and "syslog" for syslog-style', category="Logging") log_level : Literal["debug", "info", "warning", "error", "critical"] = Field(default="info", description="Emit logging messages at this level or higher", category="Logging") version : bool = Field(default=False, description="Show InvokeAI version and exit", category="Other") # fmt: on class Config: validate_assignment = True def parse_args(self, argv: List[str] = None, conf: DictConfig = None, clobber=False): """ Update settings with contents of init file, environment, and command-line settings. :param conf: alternate Omegaconf dictionary object :param argv: aternate sys.argv list :param clobber: ovewrite any initialization parameters passed during initialization """ # Set the runtime root directory. We parse command-line switches here # in order to pick up the --root_dir option. super().parse_args(argv) if conf is None: try: conf = OmegaConf.load(self.root_dir / INIT_FILE) except Exception: pass InvokeAISettings.initconf = conf # parse args again in order to pick up settings in configuration file super().parse_args(argv) if self.singleton_init and not clobber: hints = get_type_hints(self.__class__) for k in self.singleton_init: setattr(self, k, parse_obj_as(hints[k], self.singleton_init[k])) @classmethod def get_config(cls, **kwargs) -> InvokeAIAppConfig: """ This returns a singleton InvokeAIAppConfig configuration object. """ if ( cls.singleton_config is None or type(cls.singleton_config) is not cls or (kwargs and cls.singleton_init != kwargs) ): cls.singleton_config = cls(**kwargs) cls.singleton_init = kwargs return cls.singleton_config @property def root_path(self) -> Path: """ Path to the runtime root directory """ if self.root: root = Path(self.root).expanduser().absolute() else: root = self.find_root().expanduser().absolute() self.root = root # insulate ourselves from relative paths that may change return root @property def root_dir(self) -> Path: """ Alias for above. """ return self.root_path def _resolve(self, partial_path: Path) -> Path: return (self.root_path / partial_path).resolve() @property def init_file_path(self) -> Path: """ Path to invokeai.yaml """ return self._resolve(INIT_FILE) @property def output_path(self) -> Path: """ Path to defaults outputs directory. """ return self._resolve(self.outdir) @property def db_path(self) -> Path: """ Path to the invokeai.db file. """ return self._resolve(self.db_dir) / DB_FILE @property def model_conf_path(self) -> Path: """ Path to models configuration file. """ return self._resolve(self.conf_path) @property def legacy_conf_path(self) -> Path: """ Path to directory of legacy configuration files (e.g. v1-inference.yaml) """ return self._resolve(self.legacy_conf_dir) @property def models_path(self) -> Path: """ Path to the models directory """ return self._resolve(self.models_dir) @property def autoconvert_path(self) -> Path: """ Path to the directory containing models to be imported automatically at startup. """ return self._resolve(self.autoconvert_dir) if self.autoconvert_dir else None # the following methods support legacy calls leftover from the Globals era @property def full_precision(self) -> bool: """Return true if precision set to float32""" return self.precision == "float32" @property def disable_xformers(self) -> bool: """Return true if xformers_enabled is false""" return not self.xformers_enabled @property def try_patchmatch(self) -> bool: """Return true if patchmatch true""" return self.patchmatch @property def nsfw_checker(self) -> bool: """NSFW node is always active and disabled from Web UIe""" return True @property def invisible_watermark(self) -> bool: """invisible watermark node is always active and disabled from Web UIe""" return True @staticmethod def find_root() -> Path: """ Choose the runtime root directory when not specified on command line or init file. """ return _find_root() class PagingArgumentParser(argparse.ArgumentParser): """ A custom ArgumentParser that uses pydoc to page its output. It also supports reading defaults from an init file. """ def print_help(self, file=None): text = self.format_help() pydoc.pager(text) def get_invokeai_config(**kwargs) -> InvokeAIAppConfig: """ Legacy function which returns InvokeAIAppConfig.get_config() """ return InvokeAIAppConfig.get_config(**kwargs)