import json import torch import safetensors.torch from dataclasses import dataclass from diffusers import ModelMixin, ConfigMixin from pathlib import Path from typing import Callable, Literal, Union, Dict from picklescan.scanner import scan_file_path from .models import BaseModelType, ModelType, ModelVariantType, SchedulerPredictionType, SilenceWarnings @dataclass class ModelProbeInfo(object): model_type: ModelType base_type: BaseModelType variant_type: ModelVariantType prediction_type: SchedulerPredictionType upcast_attention: bool format: Literal['diffusers','checkpoint'] image_size: int class ProbeBase(object): '''forward declaration''' pass class ModelProbe(object): PROBES = { 'diffusers': { }, 'checkpoint': { }, } CLASS2TYPE = { 'StableDiffusionPipeline' : ModelType.Main, 'AutoencoderKL' : ModelType.Vae, 'ControlNetModel' : ModelType.ControlNet, } @classmethod def register_probe(cls, format: Literal['diffusers','checkpoint'], model_type: ModelType, probe_class: ProbeBase): cls.PROBES[format][model_type] = probe_class @classmethod def heuristic_probe(cls, model: Union[Dict, ModelMixin, Path], prediction_type_helper: Callable[[Path],SchedulerPredictionType]=None, )->ModelProbeInfo: if isinstance(model,Path): return cls.probe(model_path=model,prediction_type_helper=prediction_type_helper) elif isinstance(model,(dict,ModelMixin,ConfigMixin)): return cls.probe(model_path=None, model=model, prediction_type_helper=prediction_type_helper) else: raise Exception("model parameter {model} is neither a Path, nor a model") @classmethod def probe(cls, model_path: Path, model: Union[Dict, ModelMixin] = None, prediction_type_helper: Callable[[Path],SchedulerPredictionType] = None)->ModelProbeInfo: ''' Probe the model at model_path and return sufficient information about it to place it somewhere in the models directory hierarchy. If the model is already loaded into memory, you may provide it as model in order to avoid opening it a second time. The prediction_type_helper callable is a function that receives the path to the model and returns the BaseModelType. It is called to distinguish between V2-Base and V2-768 SD models. ''' if model_path: format = 'diffusers' if model_path.is_dir() else 'checkpoint' else: format = 'diffusers' if isinstance(model,(ConfigMixin,ModelMixin)) else 'checkpoint' model_info = None try: model_type = cls.get_model_type_from_folder(model_path, model) \ if format == 'diffusers' \ else cls.get_model_type_from_checkpoint(model_path, model) probe_class = cls.PROBES[format].get(model_type) if not probe_class: return None probe = probe_class(model_path, model, prediction_type_helper) base_type = probe.get_base_type() variant_type = probe.get_variant_type() prediction_type = probe.get_scheduler_prediction_type() model_info = ModelProbeInfo( model_type = model_type, base_type = base_type, variant_type = variant_type, prediction_type = prediction_type, upcast_attention = (base_type==BaseModelType.StableDiffusion2 \ and prediction_type==SchedulerPredictionType.VPrediction), format = format, image_size = 768 if (base_type==BaseModelType.StableDiffusion2 \ and prediction_type==SchedulerPredictionType.VPrediction \ ) else 512, ) except Exception: return None return model_info @classmethod def get_model_type_from_checkpoint(cls, model_path: Path, checkpoint: dict)->ModelType: if model_path.suffix not in ('.bin','.pt','.ckpt','.safetensors'): return None if model_path.name=='learned_embeds.bin': return ModelType.TextualInversion checkpoint = checkpoint or cls._scan_and_load_checkpoint(model_path) state_dict = checkpoint.get("state_dict") or checkpoint if len(checkpoint) < 10 and all(isinstance(v, torch.Tensor) for v in checkpoint.values()): return ModelType.TextualInversion if any([x.startswith("model.diffusion_model") for x in state_dict.keys()]): return ModelType.Main if any([x.startswith("encoder.conv_in") for x in state_dict.keys()]): return ModelType.Vae if "string_to_token" in state_dict or "emb_params" in state_dict: return ModelType.TextualInversion if any([x.startswith("lora") for x in state_dict.keys()]): return ModelType.Lora if any([x.startswith("control_model") for x in state_dict.keys()]): return ModelType.ControlNet if any([x.startswith("input_blocks") for x in state_dict.keys()]): return ModelType.ControlNet return None # give up @classmethod def get_model_type_from_folder(cls, folder_path: Path, model: ModelMixin)->ModelType: ''' Get the model type of a hugging-face style folder. ''' class_name = None if model: class_name = model.__class__.__name__ else: if (folder_path / 'learned_embeds.bin').exists(): return ModelType.TextualInversion if (folder_path / 'pytorch_lora_weights.bin').exists(): return ModelType.Lora i = folder_path / 'model_index.json' c = folder_path / 'config.json' config_path = i if i.exists() else c if c.exists() else None if config_path: with open(config_path,'r') as file: conf = json.load(file) class_name = conf['_class_name'] if class_name and (type := cls.CLASS2TYPE.get(class_name)): return type # give up raise ValueError("Unable to determine model type") @classmethod def _scan_and_load_checkpoint(cls,model_path: Path)->dict: with SilenceWarnings(): if model_path.suffix.endswith((".ckpt", ".pt", ".bin")): cls._scan_model(model_path, model_path) return torch.load(model_path) else: return safetensors.torch.load_file(model_path) @classmethod def _scan_model(cls, model_name, checkpoint): """ Apply picklescanner to the indicated checkpoint and issue a warning and option to exit if an infected file is identified. """ # scan model scan_result = scan_file_path(checkpoint) if scan_result.infected_files != 0: raise "The model {model_name} is potentially infected by malware. Aborting import." ###################################################3 # Checkpoint probing ###################################################3 class ProbeBase(object): def get_base_type(self)->BaseModelType: pass def get_variant_type(self)->ModelVariantType: pass def get_scheduler_prediction_type(self)->SchedulerPredictionType: pass class CheckpointProbeBase(ProbeBase): def __init__(self, checkpoint_path: Path, checkpoint: dict, helper: Callable[[Path],SchedulerPredictionType] = None )->BaseModelType: self.checkpoint = checkpoint or ModelProbe._scan_and_load_checkpoint(checkpoint_path) self.checkpoint_path = checkpoint_path self.helper = helper def get_base_type(self)->BaseModelType: pass def get_variant_type(self)-> ModelVariantType: model_type = ModelProbe.get_model_type_from_checkpoint(self.checkpoint_path,self.checkpoint) if model_type != ModelType.Main: return ModelVariantType.Normal state_dict = self.checkpoint.get('state_dict') or self.checkpoint in_channels = state_dict[ "model.diffusion_model.input_blocks.0.0.weight" ].shape[1] if in_channels == 9: return ModelVariantType.Inpaint elif in_channels == 5: return ModelVariantType.Depth elif in_channels == 4: return ModelVariantType.Normal else: raise Exception("Cannot determine variant type") class PipelineCheckpointProbe(CheckpointProbeBase): def get_base_type(self)->BaseModelType: checkpoint = self.checkpoint state_dict = self.checkpoint.get('state_dict') or checkpoint key_name = "model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_k.weight" if key_name in state_dict and state_dict[key_name].shape[-1] == 768: return BaseModelType.StableDiffusion1 if key_name in state_dict and state_dict[key_name].shape[-1] == 1024: return BaseModelType.StableDiffusion2 raise Exception("Cannot determine base type") def get_scheduler_prediction_type(self)->SchedulerPredictionType: type = self.get_base_type() if type == BaseModelType.StableDiffusion1: return SchedulerPredictionType.Epsilon checkpoint = self.checkpoint state_dict = self.checkpoint.get('state_dict') or checkpoint key_name = "model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_k.weight" if key_name in state_dict and state_dict[key_name].shape[-1] == 1024: if 'global_step' in checkpoint: if checkpoint['global_step'] == 220000: return SchedulerPredictionType.Epsilon elif checkpoint["global_step"] == 110000: return SchedulerPredictionType.VPrediction if self.checkpoint_path and self.helper: return self.helper(self.checkpoint_path) else: return None class VaeCheckpointProbe(CheckpointProbeBase): def get_base_type(self)->BaseModelType: # I can't find any standalone 2.X VAEs to test with! return BaseModelType.StableDiffusion1 class LoRACheckpointProbe(CheckpointProbeBase): def get_base_type(self)->BaseModelType: checkpoint = self.checkpoint key1 = "lora_te_text_model_encoder_layers_0_mlp_fc1.lora_down.weight" key2 = "lora_te_text_model_encoder_layers_0_self_attn_k_proj.hada_w1_a" lora_token_vector_length = ( checkpoint[key1].shape[1] if key1 in checkpoint else checkpoint[key2].shape[0] if key2 in checkpoint else 768 ) if lora_token_vector_length == 768: return BaseModelType.StableDiffusion1 elif lora_token_vector_length == 1024: return BaseModelType.StableDiffusion2 else: return None class TextualInversionCheckpointProbe(CheckpointProbeBase): def get_base_type(self)->BaseModelType: checkpoint = self.checkpoint if 'string_to_token' in checkpoint: token_dim = list(checkpoint['string_to_param'].values())[0].shape[-1] elif 'emb_params' in checkpoint: token_dim = checkpoint['emb_params'].shape[-1] else: token_dim = list(checkpoint.values())[0].shape[0] if token_dim == 768: return BaseModelType.StableDiffusion1 elif token_dim == 1024: return BaseModelType.StableDiffusion2 else: return None class ControlNetCheckpointProbe(CheckpointProbeBase): def get_base_type(self)->BaseModelType: checkpoint = self.checkpoint for key_name in ('control_model.input_blocks.2.1.transformer_blocks.0.attn2.to_k.weight', 'input_blocks.2.1.transformer_blocks.0.attn2.to_k.weight' ): if key_name not in checkpoint: continue if checkpoint[key_name].shape[-1] == 768: return BaseModelType.StableDiffusion1 elif checkpoint[key_name].shape[-1] == 1024: return BaseModelType.StableDiffusion2 elif self.checkpoint_path and self.helper: return self.helper(self.checkpoint_path) raise Exception("Unable to determine base type for {self.checkpoint_path}") ######################################################## # classes for probing folders ####################################################### class FolderProbeBase(ProbeBase): def __init__(self, folder_path: Path, model: ModelMixin = None, helper: Callable=None # not used ): self.model = model self.folder_path = folder_path def get_variant_type(self)->ModelVariantType: return ModelVariantType.Normal class PipelineFolderProbe(FolderProbeBase): def get_base_type(self)->BaseModelType: if self.model: unet_conf = self.model.unet.config else: with open(self.folder_path / 'unet' / 'config.json','r') as file: unet_conf = json.load(file) if unet_conf['cross_attention_dim'] == 768: return BaseModelType.StableDiffusion1 elif unet_conf['cross_attention_dim'] == 1024: return BaseModelType.StableDiffusion2 else: raise ValueError(f'Unknown base model for {self.folder_path}') def get_scheduler_prediction_type(self)->SchedulerPredictionType: if self.model: scheduler_conf = self.model.scheduler.config else: with open(self.folder_path / 'scheduler' / 'scheduler_config.json','r') as file: scheduler_conf = json.load(file) if scheduler_conf['prediction_type'] == "v_prediction": return SchedulerPredictionType.VPrediction elif scheduler_conf['prediction_type'] == 'epsilon': return SchedulerPredictionType.Epsilon else: return None def get_variant_type(self)->ModelVariantType: # This only works for pipelines! Any kind of # exception results in our returning the # "normal" variant type try: if self.model: conf = self.model.unet.config else: config_file = self.folder_path / 'unet' / 'config.json' with open(config_file,'r') as file: conf = json.load(file) in_channels = conf['in_channels'] if in_channels == 9: return ModelVariantType.Inpainting elif in_channels == 5: return ModelVariantType.Depth elif in_channels == 4: return ModelVariantType.Normal except: pass return ModelVariantType.Normal class VaeFolderProbe(FolderProbeBase): def get_base_type(self)->BaseModelType: return BaseModelType.StableDiffusion1 class TextualInversionFolderProbe(FolderProbeBase): def get_base_type(self)->BaseModelType: path = self.folder_path / 'learned_embeds.bin' if not path.exists(): return None checkpoint = ModelProbe._scan_and_load_checkpoint(path) return TextualInversionCheckpointProbe(None,checkpoint=checkpoint).get_base_type() class ControlNetFolderProbe(FolderProbeBase): def get_base_type(self)->BaseModelType: config_file = self.folder_path / 'config.json' if not config_file.exists(): raise Exception(f"Cannot determine base type for {self.folder_path}") with open(config_file,'r') as file: config = json.load(file) # no obvious way to distinguish between sd2-base and sd2-768 return BaseModelType.StableDiffusion1 \ if config['cross_attention_dim']==768 \ else BaseModelType.StableDiffusion2 class LoRAFolderProbe(FolderProbeBase): def get_base_type(self)->BaseModelType: model_file = None for suffix in ['safetensors','bin']: base_file = self.folder_path / f'pytorch_lora_weights.{suffix}' if base_file.exists(): model_file = base_file break if not model_file: raise Exception('Unknown LoRA format encountered') return LoRACheckpointProbe(model_file,None).get_base_type() ############## register probe classes ###### ModelProbe.register_probe('diffusers', ModelType.Main, PipelineFolderProbe) ModelProbe.register_probe('diffusers', ModelType.Vae, VaeFolderProbe) ModelProbe.register_probe('diffusers', ModelType.Lora, LoRAFolderProbe) ModelProbe.register_probe('diffusers', ModelType.TextualInversion, TextualInversionFolderProbe) ModelProbe.register_probe('diffusers', ModelType.ControlNet, ControlNetFolderProbe) ModelProbe.register_probe('checkpoint', ModelType.Main, PipelineCheckpointProbe) ModelProbe.register_probe('checkpoint', ModelType.Vae, VaeCheckpointProbe) ModelProbe.register_probe('checkpoint', ModelType.Lora, LoRACheckpointProbe) ModelProbe.register_probe('checkpoint', ModelType.TextualInversion, TextualInversionCheckpointProbe) ModelProbe.register_probe('checkpoint', ModelType.ControlNet, ControlNetCheckpointProbe)