# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654) from typing import Optional, Tuple import torch from pydantic import BaseModel, Field from invokeai.app.shared.fields import FieldDescriptions from .baseinvocation import ( BaseInvocation, BaseInvocationOutput, Input, InputField, InvocationContext, OutputField, UIComponent, invocation, invocation_output, ) """ Primitives: Boolean, Integer, Float, String, Image, Latents, Conditioning, Color - primitive nodes - primitive outputs - primitive collection outputs """ # region Boolean @invocation_output("boolean_output") class BooleanOutput(BaseInvocationOutput): """Base class for nodes that output a single boolean""" value: bool = OutputField(description="The output boolean") @invocation_output("boolean_collection_output") class BooleanCollectionOutput(BaseInvocationOutput): """Base class for nodes that output a collection of booleans""" collection: list[bool] = OutputField( description="The output boolean collection", ) @invocation( "boolean", title="Boolean Primitive", tags=["primitives", "boolean"], category="primitives", version="1.0.0" ) class BooleanInvocation(BaseInvocation): """A boolean primitive value""" value: bool = InputField(default=False, description="The boolean value") def invoke(self, context: InvocationContext) -> BooleanOutput: return BooleanOutput(value=self.value) @invocation( "boolean_collection", title="Boolean Collection Primitive", tags=["primitives", "boolean", "collection"], category="primitives", version="1.0.1", ) class BooleanCollectionInvocation(BaseInvocation): """A collection of boolean primitive values""" collection: list[bool] = InputField(default=[], description="The collection of boolean values") def invoke(self, context: InvocationContext) -> BooleanCollectionOutput: return BooleanCollectionOutput(collection=self.collection) # endregion # region Integer @invocation_output("integer_output") class IntegerOutput(BaseInvocationOutput): """Base class for nodes that output a single integer""" value: int = OutputField(description="The output integer") @invocation_output("integer_collection_output") class IntegerCollectionOutput(BaseInvocationOutput): """Base class for nodes that output a collection of integers""" collection: list[int] = OutputField( description="The int collection", ) @invocation( "integer", title="Integer Primitive", tags=["primitives", "integer"], category="primitives", version="1.0.0" ) class IntegerInvocation(BaseInvocation): """An integer primitive value""" value: int = InputField(default=0, description="The integer value") def invoke(self, context: InvocationContext) -> IntegerOutput: return IntegerOutput(value=self.value) @invocation( "integer_collection", title="Integer Collection Primitive", tags=["primitives", "integer", "collection"], category="primitives", version="1.0.1", ) class IntegerCollectionInvocation(BaseInvocation): """A collection of integer primitive values""" collection: list[int] = InputField(default=[], description="The collection of integer values") def invoke(self, context: InvocationContext) -> IntegerCollectionOutput: return IntegerCollectionOutput(collection=self.collection) # endregion # region Float @invocation_output("float_output") class FloatOutput(BaseInvocationOutput): """Base class for nodes that output a single float""" value: float = OutputField(description="The output float") @invocation_output("float_collection_output") class FloatCollectionOutput(BaseInvocationOutput): """Base class for nodes that output a collection of floats""" collection: list[float] = OutputField( description="The float collection", ) @invocation("float", title="Float Primitive", tags=["primitives", "float"], category="primitives", version="1.0.0") class FloatInvocation(BaseInvocation): """A float primitive value""" value: float = InputField(default=0.0, description="The float value") def invoke(self, context: InvocationContext) -> FloatOutput: return FloatOutput(value=self.value) @invocation( "float_collection", title="Float Collection Primitive", tags=["primitives", "float", "collection"], category="primitives", version="1.0.1", ) class FloatCollectionInvocation(BaseInvocation): """A collection of float primitive values""" collection: list[float] = InputField(default=[], description="The collection of float values") def invoke(self, context: InvocationContext) -> FloatCollectionOutput: return FloatCollectionOutput(collection=self.collection) # endregion # region String @invocation_output("string_output") class StringOutput(BaseInvocationOutput): """Base class for nodes that output a single string""" value: str = OutputField(description="The output string") @invocation_output("string_collection_output") class StringCollectionOutput(BaseInvocationOutput): """Base class for nodes that output a collection of strings""" collection: list[str] = OutputField( description="The output strings", ) @invocation("string", title="String Primitive", tags=["primitives", "string"], category="primitives", version="1.0.0") class StringInvocation(BaseInvocation): """A string primitive value""" value: str = InputField(default="", description="The string value", ui_component=UIComponent.Textarea) def invoke(self, context: InvocationContext) -> StringOutput: return StringOutput(value=self.value) @invocation( "string_collection", title="String Collection Primitive", tags=["primitives", "string", "collection"], category="primitives", version="1.0.1", ) class StringCollectionInvocation(BaseInvocation): """A collection of string primitive values""" collection: list[str] = InputField(default=[], description="The collection of string values") def invoke(self, context: InvocationContext) -> StringCollectionOutput: return StringCollectionOutput(collection=self.collection) # endregion # region Image class ImageField(BaseModel): """An image primitive field""" image_name: str = Field(description="The name of the image") class BoardField(BaseModel): """A board primitive field""" board_id: str = Field(description="The id of the board") @invocation_output("image_output") class ImageOutput(BaseInvocationOutput): """Base class for nodes that output a single image""" image: ImageField = OutputField(description="The output image") width: int = OutputField(description="The width of the image in pixels") height: int = OutputField(description="The height of the image in pixels") @invocation_output("image_collection_output") class ImageCollectionOutput(BaseInvocationOutput): """Base class for nodes that output a collection of images""" collection: list[ImageField] = OutputField( description="The output images", ) @invocation("image", title="Image Primitive", tags=["primitives", "image"], category="primitives", version="1.0.0") class ImageInvocation( BaseInvocation, ): """An image primitive value""" image: ImageField = InputField(description="The image to load") def invoke(self, context: InvocationContext) -> ImageOutput: image = context.services.images.get_pil_image(self.image.image_name) return ImageOutput( image=ImageField(image_name=self.image.image_name), width=image.width, height=image.height, ) @invocation( "image_collection", title="Image Collection Primitive", tags=["primitives", "image", "collection"], category="primitives", version="1.0.0", ) class ImageCollectionInvocation(BaseInvocation): """A collection of image primitive values""" collection: list[ImageField] = InputField(description="The collection of image values") def invoke(self, context: InvocationContext) -> ImageCollectionOutput: return ImageCollectionOutput(collection=self.collection) # endregion # region DenoiseMask class DenoiseMaskField(BaseModel): """An inpaint mask field""" mask_name: str = Field(description="The name of the mask image") masked_latents_name: Optional[str] = Field(default=None, description="The name of the masked image latents") @invocation_output("denoise_mask_output") class DenoiseMaskOutput(BaseInvocationOutput): """Base class for nodes that output a single image""" denoise_mask: DenoiseMaskField = OutputField(description="Mask for denoise model run") # endregion # region Latents class LatentsField(BaseModel): """A latents tensor primitive field""" latents_name: str = Field(description="The name of the latents") seed: Optional[int] = Field(default=None, description="Seed used to generate this latents") @invocation_output("latents_output") class LatentsOutput(BaseInvocationOutput): """Base class for nodes that output a single latents tensor""" latents: LatentsField = OutputField( description=FieldDescriptions.latents, ) width: int = OutputField(description=FieldDescriptions.width) height: int = OutputField(description=FieldDescriptions.height) @invocation_output("latents_collection_output") class LatentsCollectionOutput(BaseInvocationOutput): """Base class for nodes that output a collection of latents tensors""" collection: list[LatentsField] = OutputField( description=FieldDescriptions.latents, ) @invocation( "latents", title="Latents Primitive", tags=["primitives", "latents"], category="primitives", version="1.0.0" ) class LatentsInvocation(BaseInvocation): """A latents tensor primitive value""" latents: LatentsField = InputField(description="The latents tensor", input=Input.Connection) def invoke(self, context: InvocationContext) -> LatentsOutput: latents = context.services.latents.get(self.latents.latents_name) return build_latents_output(self.latents.latents_name, latents) @invocation( "latents_collection", title="Latents Collection Primitive", tags=["primitives", "latents", "collection"], category="primitives", version="1.0.0", ) class LatentsCollectionInvocation(BaseInvocation): """A collection of latents tensor primitive values""" collection: list[LatentsField] = InputField( description="The collection of latents tensors", ) def invoke(self, context: InvocationContext) -> LatentsCollectionOutput: return LatentsCollectionOutput(collection=self.collection) def build_latents_output(latents_name: str, latents: torch.Tensor, seed: Optional[int] = None): return LatentsOutput( latents=LatentsField(latents_name=latents_name, seed=seed), width=latents.size()[3] * 8, height=latents.size()[2] * 8, ) # endregion # region Color class ColorField(BaseModel): """A color primitive field""" r: int = Field(ge=0, le=255, description="The red component") g: int = Field(ge=0, le=255, description="The green component") b: int = Field(ge=0, le=255, description="The blue component") a: int = Field(ge=0, le=255, description="The alpha component") def tuple(self) -> Tuple[int, int, int, int]: return (self.r, self.g, self.b, self.a) @invocation_output("color_output") class ColorOutput(BaseInvocationOutput): """Base class for nodes that output a single color""" color: ColorField = OutputField(description="The output color") @invocation_output("color_collection_output") class ColorCollectionOutput(BaseInvocationOutput): """Base class for nodes that output a collection of colors""" collection: list[ColorField] = OutputField( description="The output colors", ) @invocation("color", title="Color Primitive", tags=["primitives", "color"], category="primitives", version="1.0.0") class ColorInvocation(BaseInvocation): """A color primitive value""" color: ColorField = InputField(default=ColorField(r=0, g=0, b=0, a=255), description="The color value") def invoke(self, context: InvocationContext) -> ColorOutput: return ColorOutput(color=self.color) # endregion # region Conditioning class DenoisingArea(BaseModel): top_y: int = Field(description="TODO") left_x: int = Field(description="TODO") height: int = Field(description="TODO") width: int = Field(description="TODO") class ConditioningField(BaseModel): """A conditioning tensor primitive value""" conditioning_name: str = Field(description="The name of conditioning tensor") # mask_name: Optional[str] = Field( # default=None, # description="The mask associated with this conditioning tensor. Excluded regions should be set to 0, included " # "regions should be set to 1.", # ) denoising_area: DenoisingArea = Field(description="The area to apply this conditioning to. Coordinates are in latent space.") mask_strength: float = Field( default=1.0, description="The strength of the mask. Only has an effect if mask_name is set. The strength is relative to " "other masks. The default is 1.0. If set to 0.0, this mask will be ignored.", ) @invocation_output("conditioning_output") class ConditioningOutput(BaseInvocationOutput): """Base class for nodes that output a single conditioning tensor""" conditioning: ConditioningField = OutputField(description=FieldDescriptions.cond) @invocation_output("conditioning_collection_output") class ConditioningCollectionOutput(BaseInvocationOutput): """Base class for nodes that output a collection of conditioning tensors""" collection: list[ConditioningField] = OutputField( description="The output conditioning tensors", ) @invocation( "conditioning", title="Conditioning Primitive", tags=["primitives", "conditioning"], category="primitives", version="1.0.0", ) class ConditioningInvocation(BaseInvocation): """A conditioning tensor primitive value""" conditioning: ConditioningField = InputField(description=FieldDescriptions.cond, input=Input.Connection) def invoke(self, context: InvocationContext) -> ConditioningOutput: return ConditioningOutput(conditioning=self.conditioning) @invocation( "conditioning_collection", title="Conditioning Collection Primitive", tags=["primitives", "conditioning", "collection"], category="primitives", version="1.0.1", ) class ConditioningCollectionInvocation(BaseInvocation): """A collection of conditioning tensor primitive values""" collection: list[ConditioningField] = InputField( default=[], description="The collection of conditioning tensors", ) def invoke(self, context: InvocationContext) -> ConditioningCollectionOutput: return ConditioningCollectionOutput(collection=self.collection) # endregion