''' ldm.invoke.generator.txt2img inherits from ldm.invoke.generator ''' import math from typing import Callable, Optional import torch from diffusers.utils.logging import get_verbosity, set_verbosity, set_verbosity_error from ldm.invoke.generator.base import Generator from ldm.invoke.generator.diffusers_pipeline import trim_to_multiple_of, StableDiffusionGeneratorPipeline, \ ConditioningData from ldm.models.diffusion.shared_invokeai_diffusion import ThresholdSettings class Txt2Img2Img(Generator): def __init__(self, model, precision): super().__init__(model, precision) self.init_latent = None # for get_noise() def get_make_image(self, prompt:str, sampler, steps:int, cfg_scale:float, ddim_eta, conditioning, width:int, height:int, strength:float, step_callback:Optional[Callable]=None, threshold=0.0, **kwargs): """ Returns a function returning an image derived from the prompt and the initial image Return value depends on the seed at the time you call it kwargs are 'width' and 'height' """ # noinspection PyTypeChecker pipeline: StableDiffusionGeneratorPipeline = self.model pipeline.scheduler = sampler uc, c, extra_conditioning_info = conditioning conditioning_data = ( ConditioningData( uc, c, cfg_scale, extra_conditioning_info, threshold = ThresholdSettings(threshold, warmup=0.2) if threshold else None) .add_scheduler_args_if_applicable(pipeline.scheduler, eta=ddim_eta)) def make_image(x_T): first_pass_latent_output, _ = pipeline.latents_from_embeddings( latents=torch.zeros_like(x_T), num_inference_steps=steps, conditioning_data=conditioning_data, noise=x_T, callback=step_callback, # TODO: threshold = threshold, ) # Get our initial generation width and height directly from the latent output so # the message below is accurate. init_width = first_pass_latent_output.size()[3] * self.downsampling_factor init_height = first_pass_latent_output.size()[2] * self.downsampling_factor print( f"\n>> Interpolating from {init_width}x{init_height} to {width}x{height} using DDIM sampling" ) # resizing resized_latents = torch.nn.functional.interpolate( first_pass_latent_output, size=(height // self.downsampling_factor, width // self.downsampling_factor), mode="bilinear" ) second_pass_noise = self.get_noise_like(resized_latents) verbosity = get_verbosity() set_verbosity_error() pipeline_output = pipeline.img2img_from_latents_and_embeddings( resized_latents, num_inference_steps=steps, conditioning_data=conditioning_data, strength=strength, noise=second_pass_noise, callback=step_callback) set_verbosity(verbosity) return pipeline.numpy_to_pil(pipeline_output.images)[0] # FIXME: do we really need something entirely different for the inpainting model? # in the case of the inpainting model being loaded, the trick of # providing an interpolated latent doesn't work, so we transiently # create a 512x512 PIL image, upscale it, and run the inpainting # over it in img2img mode. Because the inpaing model is so conservative # it doesn't change the image (much) return make_image def get_noise_like(self, like: torch.Tensor): device = like.device if device.type == 'mps': x = torch.randn_like(like, device='cpu', dtype=self.torch_dtype()).to(device) else: x = torch.randn_like(like, device=device, dtype=self.torch_dtype()) if self.perlin > 0.0: shape = like.shape x = (1-self.perlin)*x + self.perlin*self.get_perlin_noise(shape[3], shape[2]) return x # returns a tensor filled with random numbers from a normal distribution def get_noise(self,width,height,scale = True): # print(f"Get noise: {width}x{height}") if scale: # Scale the input width and height for the initial generation # Make their area equivalent to the model's resolution area (e.g. 512*512 = 262144), # while keeping the minimum dimension at least 0.5 * resolution (e.g. 512*0.5 = 256) aspect = width / height dimension = self.model.unet.config.sample_size * self.model.vae_scale_factor min_dimension = math.floor(dimension * 0.5) model_area = dimension * dimension # hardcoded for now since all models are trained on square images if aspect > 1.0: init_height = max(min_dimension, math.sqrt(model_area / aspect)) init_width = init_height * aspect else: init_width = max(min_dimension, math.sqrt(model_area * aspect)) init_height = init_width / aspect scaled_width, scaled_height = trim_to_multiple_of(math.floor(init_width), math.floor(init_height)) else: scaled_width = width scaled_height = height device = self.model.device channels = self.latent_channels if channels == 9: channels = 4 # we don't really want noise for all the mask channels shape = (1, channels, scaled_height // self.downsampling_factor, scaled_width // self.downsampling_factor) if self.use_mps_noise or device.type == 'mps': return torch.randn(shape, dtype=self.torch_dtype(), device='cpu').to(device) else: return torch.randn(shape, dtype=self.torch_dtype(), device=device)