from inspect import isfunction import math import torch import torch.nn.functional as F from torch import nn, einsum from einops import rearrange, repeat from ldm.modules.diffusionmodules.util import checkpoint import psutil def exists(val): return val is not None def uniq(arr): return{el: True for el in arr}.keys() def default(val, d): if exists(val): return val return d() if isfunction(d) else d def max_neg_value(t): return -torch.finfo(t.dtype).max def init_(tensor): dim = tensor.shape[-1] std = 1 / math.sqrt(dim) tensor.uniform_(-std, std) return tensor # feedforward class GEGLU(nn.Module): def __init__(self, dim_in, dim_out): super().__init__() self.proj = nn.Linear(dim_in, dim_out * 2) def forward(self, x): x, gate = self.proj(x).chunk(2, dim=-1) return x * F.gelu(gate) class FeedForward(nn.Module): def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.): super().__init__() inner_dim = int(dim * mult) dim_out = default(dim_out, dim) project_in = nn.Sequential( nn.Linear(dim, inner_dim), nn.GELU() ) if not glu else GEGLU(dim, inner_dim) self.net = nn.Sequential( project_in, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out) ) def forward(self, x): return self.net(x) def zero_module(module): """ Zero out the parameters of a module and return it. """ for p in module.parameters(): p.detach().zero_() return module def Normalize(in_channels): return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True) class LinearAttention(nn.Module): def __init__(self, dim, heads=4, dim_head=32): super().__init__() self.heads = heads hidden_dim = dim_head * heads self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias = False) self.to_out = nn.Conv2d(hidden_dim, dim, 1) def forward(self, x): b, c, h, w = x.shape qkv = self.to_qkv(x) q, k, v = rearrange(qkv, 'b (qkv heads c) h w -> qkv b heads c (h w)', heads = self.heads, qkv=3) k = k.softmax(dim=-1) context = torch.einsum('bhdn,bhen->bhde', k, v) out = torch.einsum('bhde,bhdn->bhen', context, q) out = rearrange(out, 'b heads c (h w) -> b (heads c) h w', heads=self.heads, h=h, w=w) return self.to_out(out) class SpatialSelfAttention(nn.Module): def __init__(self, in_channels): super().__init__() self.in_channels = in_channels self.norm = Normalize(in_channels) self.q = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) self.k = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) self.v = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) self.proj_out = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) def forward(self, x): h_ = x h_ = self.norm(h_) q = self.q(h_) k = self.k(h_) v = self.v(h_) # compute attention b,c,h,w = q.shape q = rearrange(q, 'b c h w -> b (h w) c') k = rearrange(k, 'b c h w -> b c (h w)') w_ = torch.einsum('bij,bjk->bik', q, k) w_ = w_ * (int(c)**(-0.5)) w_ = torch.nn.functional.softmax(w_, dim=2) # attend to values v = rearrange(v, 'b c h w -> b c (h w)') w_ = rearrange(w_, 'b i j -> b j i') h_ = torch.einsum('bij,bjk->bik', v, w_) h_ = rearrange(h_, 'b c (h w) -> b c h w', h=h) h_ = self.proj_out(h_) return x+h_ class CrossAttention(nn.Module): def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.): super().__init__() inner_dim = dim_head * heads context_dim = default(context_dim, query_dim) self.scale = dim_head ** -0.5 self.heads = heads self.to_q = nn.Linear(query_dim, inner_dim, bias=False) self.to_k = nn.Linear(context_dim, inner_dim, bias=False) self.to_v = nn.Linear(context_dim, inner_dim, bias=False) self.to_out = nn.Sequential( nn.Linear(inner_dim, query_dim), nn.Dropout(dropout) ) if not torch.cuda.is_available(): mem_av = psutil.virtual_memory().available / (1024**3) if mem_av > 32: self.einsum_op = self.einsum_op_v1 elif mem_av > 12: self.einsum_op = self.einsum_op_v2 else: self.einsum_op = self.einsum_op_v3 del mem_av else: self.einsum_op = self.einsum_op_v4 # mps 64-128 GB def einsum_op_v1(self, q, k, v, r1): if q.shape[1] <= 4096: # for 512x512: the max q.shape[1] is 4096 s1 = einsum('b i d, b j d -> b i j', q, k) * self.scale # aggressive/faster: operation in one go s2 = s1.softmax(dim=-1, dtype=q.dtype) del s1 r1 = einsum('b i j, b j d -> b i d', s2, v) del s2 else: # q.shape[0] * q.shape[1] * slice_size >= 2**31 throws err # needs around half of that slice_size to not generate noise slice_size = math.floor(2**30 / (q.shape[0] * q.shape[1])) for i in range(0, q.shape[1], slice_size): end = i + slice_size s1 = einsum('b i d, b j d -> b i j', q[:, i:end], k) * self.scale s2 = s1.softmax(dim=-1, dtype=r1.dtype) del s1 r1[:, i:end] = einsum('b i j, b j d -> b i d', s2, v) del s2 return r1 # mps 16-32 GB (can be optimized) def einsum_op_v2(self, q, k, v, r1): slice_size = math.floor(2**30 / (q.shape[0] * q.shape[1])) for i in range(0, q.shape[1], slice_size): # conservative/less mem: operation in steps end = i + slice_size s1 = einsum('b i d, b j d -> b i j', q[:, i:end], k) * self.scale s2 = s1.softmax(dim=-1, dtype=r1.dtype) del s1 r1[:, i:end] = einsum('b i j, b j d -> b i d', s2, v) del s2 return r1 # mps 8 GB def einsum_op_v3(self, q, k, v, r1): slice_size = 1 for i in range(0, q.shape[0], slice_size): # iterate over q.shape[0] end = min(q.shape[0], i + slice_size) s1 = einsum('b i d, b j d -> b i j', q[i:end], k[i:end]) # adapted einsum for mem s1 *= self.scale s2 = s1.softmax(dim=-1, dtype=r1.dtype) del s1 r1[i:end] = einsum('b i j, b j d -> b i d', s2, v[i:end]) # adapted einsum for mem del s2 return r1 # cuda def einsum_op_v4(self, q, k, v, r1): stats = torch.cuda.memory_stats(q.device) mem_active = stats['active_bytes.all.current'] mem_reserved = stats['reserved_bytes.all.current'] mem_free_cuda, _ = torch.cuda.mem_get_info(torch.cuda.current_device()) mem_free_torch = mem_reserved - mem_active mem_free_total = mem_free_cuda + mem_free_torch gb = 1024 ** 3 tensor_size = q.shape[0] * q.shape[1] * k.shape[1] * 4 mem_required = tensor_size * 2.5 steps = 1 if mem_required > mem_free_total: steps = 2**(math.ceil(math.log(mem_required / mem_free_total, 2))) if steps > 64: max_res = math.floor(math.sqrt(math.sqrt(mem_free_total / 2.5)) / 8) * 64 raise RuntimeError(f'Not enough memory, use lower resolution (max approx. {max_res}x{max_res}). ' f'Need: {mem_required/64/gb:0.1f}GB free, Have:{mem_free_total/gb:0.1f}GB free') slice_size = q.shape[1] // steps if (q.shape[1] % steps) == 0 else q.shape[1] for i in range(0, q.shape[1], slice_size): end = min(q.shape[1], i + slice_size) s1 = einsum('b i d, b j d -> b i j', q[:, i:end], k) * self.scale s2 = s1.softmax(dim=-1, dtype=r1.dtype) del s1 r1[:, i:end] = einsum('b i j, b j d -> b i d', s2, v) del s2 return r1 def forward(self, x, context=None, mask=None): h = self.heads q_in = self.to_q(x) context = default(context, x) k_in = self.to_k(context) v_in = self.to_v(context) device_type = 'mps' if x.device.type == 'mps' else 'cuda' del context, x q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q_in, k_in, v_in)) del q_in, k_in, v_in r1 = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype) r1 = self.einsum_op(q, k, v, r1) del q, k, v r2 = rearrange(r1, '(b h) n d -> b n (h d)', h=h) del r1 return self.to_out(r2) class BasicTransformerBlock(nn.Module): def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, checkpoint=True): super().__init__() self.attn1 = CrossAttention(query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout) # is a self-attention self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff) self.attn2 = CrossAttention(query_dim=dim, context_dim=context_dim, heads=n_heads, dim_head=d_head, dropout=dropout) # is self-attn if context is none self.norm1 = nn.LayerNorm(dim) self.norm2 = nn.LayerNorm(dim) self.norm3 = nn.LayerNorm(dim) self.checkpoint = checkpoint def forward(self, x, context=None): return checkpoint(self._forward, (x, context), self.parameters(), self.checkpoint) def _forward(self, x, context=None): x = x.contiguous() if x.device.type == 'mps' else x x = self.attn1(self.norm1(x)) + x x = self.attn2(self.norm2(x), context=context) + x x = self.ff(self.norm3(x)) + x return x class SpatialTransformer(nn.Module): """ Transformer block for image-like data. First, project the input (aka embedding) and reshape to b, t, d. Then apply standard transformer action. Finally, reshape to image """ def __init__(self, in_channels, n_heads, d_head, depth=1, dropout=0., context_dim=None): super().__init__() self.in_channels = in_channels inner_dim = n_heads * d_head self.norm = Normalize(in_channels) self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0) self.transformer_blocks = nn.ModuleList( [BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim) for d in range(depth)] ) self.proj_out = zero_module(nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)) def forward(self, x, context=None): # note: if no context is given, cross-attention defaults to self-attention b, c, h, w = x.shape x_in = x x = self.norm(x) x = self.proj_in(x) x = rearrange(x, 'b c h w -> b (h w) c') for block in self.transformer_blocks: x = block(x, context=context) x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w) x = self.proj_out(x) return x + x_in