import os import torch from typing import Optional from .base import ( ModelBase, ModelConfigBase, BaseModelType, ModelType, SubModelType, classproperty, ModelNotFoundException, ) # TODO: naming from ..lora import TextualInversionModel as TextualInversionModelRaw class TextualInversionModel(ModelBase): #model_size: int class Config(ModelConfigBase): model_format: None def __init__(self, model_path: str, base_model: BaseModelType, model_type: ModelType): assert model_type == ModelType.TextualInversion super().__init__(model_path, base_model, model_type) self.model_size = os.path.getsize(self.model_path) def get_size(self, child_type: Optional[SubModelType] = None): if child_type is not None: raise Exception("There is no child models in textual inversion") return self.model_size def get_model( self, torch_dtype: Optional[torch.dtype], child_type: Optional[SubModelType] = None, ): if child_type is not None: raise Exception("There is no child models in textual inversion") checkpoint_path = self.model_path if os.path.isdir(checkpoint_path): checkpoint_path = os.path.join(checkpoint_path, "learned_embeds.bin") if not os.path.exists(checkpoint_path): raise ModelNotFoundException() model = TextualInversionModelRaw.from_checkpoint( file_path=checkpoint_path, dtype=torch_dtype, ) self.model_size = model.embedding.nelement() * model.embedding.element_size() return model @classproperty def save_to_config(cls) -> bool: return False @classmethod def detect_format(cls, path: str): return None @classmethod def convert_if_required( cls, model_path: str, output_path: str, config: ModelConfigBase, base_model: BaseModelType, ) -> str: return model_path