from __future__ import annotations import secrets import warnings from dataclasses import dataclass from typing import List, Optional, Union, Callable import PIL.Image import einops import torch import torchvision.transforms as T from diffusers.models import attention from ldm.models.diffusion.cross_attention_control import InvokeAIDiffusersCrossAttention # monkeypatch diffusers CrossAttention 🙈 # this is to make prompt2prompt and (future) attention maps work attention.CrossAttention = InvokeAIDiffusersCrossAttention from diffusers.models import AutoencoderKL, UNet2DConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipeline from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img import StableDiffusionImg2ImgPipeline from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers.scheduling_utils import SchedulerMixin, SchedulerOutput from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils.outputs import BaseOutput from torchvision.transforms.functional import resize as tv_resize from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer from ldm.models.diffusion.shared_invokeai_diffusion import InvokeAIDiffuserComponent from ldm.modules.embedding_manager import EmbeddingManager from ldm.modules.encoders.modules import WeightedFrozenCLIPEmbedder @dataclass class PipelineIntermediateState: run_id: str step: int timestep: int latents: torch.Tensor predicted_original: Optional[torch.Tensor] = None # copied from configs/stable-diffusion/v1-inference.yaml _default_personalization_config_params = dict( placeholder_strings=["*"], initializer_wods=["sculpture"], per_image_tokens=False, num_vectors_per_token=1, progressive_words=False ) @dataclass class AddsMaskLatents: """Add the channels required for inpainting model input. The inpainting model takes the normal latent channels as input, _plus_ a one-channel mask and the latent encoding of the base image. This class assumes the same mask and base image should apply to all items in the batch. """ forward: Callable[[torch.Tensor, torch.Tensor, torch.Tensor], torch.Tensor] mask: torch.FloatTensor initial_image_latents: torch.FloatTensor def __call__(self, latents: torch.FloatTensor, t: torch.Tensor, text_embeddings: torch.FloatTensor) -> torch.Tensor: model_input = self.add_mask_channels(latents) return self.forward(model_input, t, text_embeddings) def add_mask_channels(self, latents): batch_size = latents.size(0) # duplicate mask and latents for each batch mask = einops.repeat(self.mask, 'b c h w -> (repeat b) c h w', repeat=batch_size) image_latents = einops.repeat(self.initial_image_latents, 'b c h w -> (repeat b) c h w', repeat=batch_size) # add mask and image as additional channels model_input, _ = einops.pack([latents, mask, image_latents], 'b * h w') return model_input def are_like_tensors(a: torch.Tensor, b: object) -> bool: return ( isinstance(b, torch.Tensor) and (a.size() == b.size()) ) @dataclass class AddsMaskGuidance: mask: torch.FloatTensor mask_latents: torch.FloatTensor _scheduler: SchedulerMixin _noise_func: Callable _debug: Optional[Callable] = None def __call__(self, step_output: BaseOutput | SchedulerOutput, t: torch.Tensor, conditioning) -> BaseOutput: output_class = step_output.__class__ # We'll create a new one with masked data. # The problem with taking SchedulerOutput instead of the model output is that we're less certain what's in it. # It's reasonable to assume the first thing is prev_sample, but then does it have other things # like pred_original_sample? Should we apply the mask to them too? # But what if there's just some other random field? prev_sample = step_output[0] # Mask anything that has the same shape as prev_sample, return others as-is. return output_class( {k: (self.apply_mask(v, self._t_for_field(k, t)) if are_like_tensors(prev_sample, v) else v) for k, v in step_output.items()} ) def _t_for_field(self, field_name:str, t): if field_name == "pred_original_sample": return torch.zeros_like(t, dtype=t.dtype) # it represents t=0 return t def apply_mask(self, latents: torch.Tensor, t) -> torch.Tensor: batch_size = latents.size(0) mask = einops.repeat(self.mask, 'b c h w -> (repeat b) c h w', repeat=batch_size) noise = self._noise_func(self.mask_latents) mask_latents = self._scheduler.add_noise(self.mask_latents, noise, t) # TODO: Do we need to also apply scheduler.scale_model_input? Or is add_noise appropriately scaled already? mask_latents = einops.repeat(mask_latents, 'b c h w -> (repeat b) c h w', repeat=batch_size) masked_input = torch.lerp(mask_latents.to(dtype=latents.dtype), latents, mask.to(dtype=latents.dtype)) if self._debug: self._debug(masked_input, f"t={t} lerped") return masked_input def image_resized_to_grid_as_tensor(image: PIL.Image.Image, normalize: bool=True, multiple_of=8) -> torch.FloatTensor: """ :param image: input image :param normalize: scale the range to [-1, 1] instead of [0, 1] :param multiple_of: resize the input so both dimensions are a multiple of this """ w, h = image.size w, h = map(lambda x: x - x % multiple_of, (w, h)) # resize to integer multiple of 8 transformation = T.Compose([ T.Resize((h, w), T.InterpolationMode.LANCZOS), T.ToTensor(), ]) tensor = transformation(image) if normalize: tensor = tensor * 2.0 - 1.0 return tensor def is_inpainting_model(unet: UNet2DConditionModel): return unet.conv_in.in_channels == 9 class StableDiffusionGeneratorPipeline(StableDiffusionPipeline): r""" Pipeline for text-to-image generation using Stable Diffusion. This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) Implementation note: This class started as a refactored copy of diffusers.StableDiffusionPipeline. Hopefully future versions of diffusers provide access to more of these functions so that we don't need to duplicate them here: https://github.com/huggingface/diffusers/issues/551#issuecomment-1281508384 Args: vae ([`AutoencoderKL`]): Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. text_encoder ([`CLIPTextModel`]): Frozen text-encoder. Stable Diffusion uses the text portion of [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. tokenizer (`CLIPTokenizer`): Tokenizer of class [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents. scheduler ([`SchedulerMixin`]): A scheduler to be used in combination with `unet` to denoise the encoded image latens. Can be one of [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. safety_checker ([`StableDiffusionSafetyChecker`]): Classification module that estimates whether generated images could be considered offsensive or harmful. Please, refer to the [model card](https://huggingface.co/CompVis/stable-diffusion-v1-4) for details. feature_extractor ([`CLIPFeatureExtractor`]): Model that extracts features from generated images to be used as inputs for the `safety_checker`. """ ID_LENGTH = 8 def __init__( self, vae: AutoencoderKL, text_encoder: CLIPTextModel, tokenizer: CLIPTokenizer, unet: UNet2DConditionModel, scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler], safety_checker: Optional[StableDiffusionSafetyChecker], feature_extractor: Optional[CLIPFeatureExtractor], requires_safety_checker: bool = False ): super().__init__(vae, text_encoder, tokenizer, unet, scheduler, safety_checker, feature_extractor, requires_safety_checker) self.register_modules( vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor, ) # InvokeAI's interface for text embeddings and whatnot self.clip_embedder = WeightedFrozenCLIPEmbedder( tokenizer=self.tokenizer, transformer=self.text_encoder ) self.invokeai_diffuser = InvokeAIDiffuserComponent(self.unet, self._unet_forward) self.embedding_manager = EmbeddingManager(self.clip_embedder, **_default_personalization_config_params) def image_from_embeddings(self, latents: torch.Tensor, num_inference_steps: int, text_embeddings: torch.Tensor, unconditioned_embeddings: torch.Tensor, guidance_scale: float, *, callback: Callable[[PipelineIntermediateState], None]=None, extra_conditioning_info: InvokeAIDiffuserComponent.ExtraConditioningInfo=None, run_id=None, **extra_step_kwargs) -> StableDiffusionPipelineOutput: r""" Function invoked when calling the pipeline for generation. :param latents: Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. :param num_inference_steps: The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. :param text_embeddings: :param guidance_scale: Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). `guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, usually at the expense of lower image quality. :param callback: :param extra_conditioning_info: :param run_id: :param extra_step_kwargs: """ self.scheduler.set_timesteps(num_inference_steps, device=self.unet.device) result = None for result in self.generate_from_embeddings( latents, text_embeddings, unconditioned_embeddings, guidance_scale, extra_conditioning_info=extra_conditioning_info, run_id=run_id, **extra_step_kwargs): if callback is not None and isinstance(result, PipelineIntermediateState): callback(result) if result is None: raise AssertionError("why was that an empty generator?") return result def generate( self, prompt: Union[str, List[str]], *, opposing_prompt: Union[str, List[str]] = None, height: Optional[int] = 512, width: Optional[int] = 512, num_inference_steps: Optional[int] = 50, guidance_scale: Optional[float] = 7.5, generator: Optional[torch.Generator] = None, latents: Optional[torch.FloatTensor] = None, run_id: str = None, **extra_step_kwargs, ): if isinstance(prompt, str): batch_size = 1 else: batch_size = len(prompt) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. do_classifier_free_guidance = guidance_scale > 1.0 combined_embeddings = self._encode_prompt(prompt, device=self._execution_device, num_images_per_prompt=1, do_classifier_free_guidance=do_classifier_free_guidance, negative_prompt=opposing_prompt) text_embeddings, unconditioned_embeddings = combined_embeddings.chunk(2) self.scheduler.set_timesteps(num_inference_steps) latents = self.prepare_latents(batch_size=batch_size, num_channels_latents=self.unet.in_channels, height=height, width=width, dtype=self.unet.dtype, device=self._execution_device, generator=generator, latents=latents) yield from self.generate_from_embeddings(latents, text_embeddings, unconditioned_embeddings, guidance_scale, run_id=run_id, **extra_step_kwargs) def generate_from_embeddings( self, latents: torch.Tensor, text_embeddings: torch.Tensor, unconditioned_embeddings: torch.Tensor, guidance_scale: float, *, run_id: str = None, extra_conditioning_info: InvokeAIDiffuserComponent.ExtraConditioningInfo = None, timesteps = None, additional_guidance: List[Callable] = None, **extra_step_kwargs): if run_id is None: run_id = secrets.token_urlsafe(self.ID_LENGTH) if additional_guidance is None: additional_guidance = [] if extra_conditioning_info is not None and extra_conditioning_info.wants_cross_attention_control: self.invokeai_diffuser.setup_cross_attention_control(extra_conditioning_info, step_count=len(self.scheduler.timesteps)) else: self.invokeai_diffuser.remove_cross_attention_control() if timesteps is None: timesteps = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler latents *= self.scheduler.init_noise_sigma yield PipelineIntermediateState(run_id=run_id, step=-1, timestep=self.scheduler.num_train_timesteps, latents=latents) batch_size = latents.shape[0] batched_t = torch.full((batch_size,), timesteps[0], dtype=timesteps.dtype, device=self.unet.device) # NOTE: Depends on scheduler being already initialized! for i, t in enumerate(self.progress_bar(timesteps)): batched_t.fill_(t) step_output = self.step(batched_t, latents, guidance_scale, text_embeddings, unconditioned_embeddings, i, additional_guidance=additional_guidance, **extra_step_kwargs) latents = step_output.prev_sample predicted_original = getattr(step_output, 'pred_original_sample', None) yield PipelineIntermediateState(run_id=run_id, step=i, timestep=int(t), latents=latents, predicted_original=predicted_original) # https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699 torch.cuda.empty_cache() with torch.inference_mode(): image = self.decode_latents(latents) output = StableDiffusionPipelineOutput(images=image, nsfw_content_detected=[]) yield self.check_for_safety(output, dtype=text_embeddings.dtype) @torch.inference_mode() def step(self, t: torch.Tensor, latents: torch.Tensor, guidance_scale: float, text_embeddings: torch.Tensor, unconditioned_embeddings: torch.Tensor, step_index:int | None = None, additional_guidance: List[Callable] = None, **extra_step_kwargs): # invokeai_diffuser has batched timesteps, but diffusers schedulers expect a single value timestep = t[0] if additional_guidance is None: additional_guidance = [] # TODO: should this scaling happen here or inside self._unet_forward? # i.e. before or after passing it to InvokeAIDiffuserComponent latent_model_input = self.scheduler.scale_model_input(latents, timestep) # predict the noise residual noise_pred = self.invokeai_diffuser.do_diffusion_step( latent_model_input, t, unconditioned_embeddings, text_embeddings, guidance_scale, step_index=step_index) # compute the previous noisy sample x_t -> x_t-1 step_output = self.scheduler.step(noise_pred, timestep, latents, **extra_step_kwargs) # TODO: this additional_guidance extension point feels redundant with InvokeAIDiffusionComponent. # But the way things are now, scheduler runs _after_ that, so there was # no way to use it to apply an operation that happens after the last scheduler.step. for guidance in additional_guidance: step_output = guidance(step_output, timestep, (unconditioned_embeddings, text_embeddings)) return step_output def _unet_forward(self, latents, t, text_embeddings): # predict the noise residual return self.unet(latents, t, encoder_hidden_states=text_embeddings).sample def img2img_from_embeddings(self, init_image: Union[torch.FloatTensor, PIL.Image.Image], strength: float, num_inference_steps: int, text_embeddings: torch.Tensor, unconditioned_embeddings: torch.Tensor, guidance_scale: float, *, callback: Callable[[PipelineIntermediateState], None] = None, extra_conditioning_info: InvokeAIDiffuserComponent.ExtraConditioningInfo = None, run_id=None, noise_func=None, **extra_step_kwargs) -> StableDiffusionPipelineOutput: device = self.unet.device latents_dtype = self.unet.dtype batch_size = 1 num_images_per_prompt = 1 if isinstance(init_image, PIL.Image.Image): init_image = image_resized_to_grid_as_tensor(init_image.convert('RGB')) if init_image.dim() == 3: init_image = einops.rearrange(init_image, 'c h w -> 1 c h w') img2img_pipeline = StableDiffusionImg2ImgPipeline(**self.components) img2img_pipeline.scheduler.set_timesteps(num_inference_steps, device=device) timesteps = img2img_pipeline.get_timesteps(num_inference_steps, strength, device=device) latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt) # 6. Prepare latent variables latents, _ = self.prepare_latents_from_image(init_image, latent_timestep, latents_dtype, device, noise_func) result = None for result in self.generate_from_embeddings( latents, text_embeddings, unconditioned_embeddings, guidance_scale, extra_conditioning_info=extra_conditioning_info, timesteps=timesteps, run_id=run_id, **extra_step_kwargs): if callback is not None and isinstance(result, PipelineIntermediateState): callback(result) if result is None: raise AssertionError("why was that an empty generator?") return result def inpaint_from_embeddings( self, init_image: torch.FloatTensor, mask: torch.FloatTensor, strength: float, num_inference_steps: int, text_embeddings: torch.Tensor, unconditioned_embeddings: torch.Tensor, guidance_scale: float, *, callback: Callable[[PipelineIntermediateState], None] = None, extra_conditioning_info: InvokeAIDiffuserComponent.ExtraConditioningInfo = None, run_id=None, noise_func=None, **extra_step_kwargs) -> StableDiffusionPipelineOutput: device = self.unet.device latents_dtype = self.unet.dtype batch_size = 1 num_images_per_prompt = 1 if isinstance(init_image, PIL.Image.Image): init_image = image_resized_to_grid_as_tensor(init_image.convert('RGB')) init_image = init_image.to(device=device, dtype=latents_dtype) if init_image.dim() == 3: init_image = init_image.unsqueeze(0) img2img_pipeline = StableDiffusionImg2ImgPipeline(**self.components) img2img_pipeline.scheduler.set_timesteps(num_inference_steps, device=device) timesteps = img2img_pipeline.get_timesteps(num_inference_steps, strength, device=device) assert img2img_pipeline.scheduler is self.scheduler # 6. Prepare latent variables latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt) latents, init_image_latents = self.prepare_latents_from_image(init_image, latent_timestep, latents_dtype, device, noise_func) if mask.dim() == 3: mask = mask.unsqueeze(0) mask = tv_resize(mask, latents.shape[-2:], T.InterpolationMode.BILINEAR) \ .to(device=device, dtype=latents_dtype) guidance: List[Callable] = [] if is_inpainting_model(self.unet): # TODO: we should probably pass this in so we don't have to try/finally around setting it. self.invokeai_diffuser.model_forward_callback = \ AddsMaskLatents(self._unet_forward, mask, init_image_latents) else: guidance.append(AddsMaskGuidance(mask, init_image_latents, self.scheduler, noise_func)) result = None try: for result in self.generate_from_embeddings( latents, text_embeddings, unconditioned_embeddings, guidance_scale, extra_conditioning_info=extra_conditioning_info, timesteps=timesteps, run_id=run_id, additional_guidance=guidance, **extra_step_kwargs): if callback is not None and isinstance(result, PipelineIntermediateState): callback(result) if result is None: raise AssertionError("why was that an empty generator?") return result finally: self.invokeai_diffuser.model_forward_callback = self._unet_forward def prepare_latents_from_image(self, init_image, timestep, dtype, device, noise_func) -> (torch.FloatTensor, torch.FloatTensor): # can't quite use upstream StableDiffusionImg2ImgPipeline.prepare_latents # because we have our own noise function init_image = init_image.to(device=device, dtype=dtype) with torch.inference_mode(): init_latent_dist = self.vae.encode(init_image).latent_dist init_latents = init_latent_dist.sample().to(dtype=dtype) # FIXME: uses torch.randn. make reproducible! init_latents = 0.18215 * init_latents noise = noise_func(init_latents) noised_latents = self.scheduler.add_noise(init_latents, noise, timestep) return noised_latents, init_latents def check_for_safety(self, output, dtype): with torch.inference_mode(): screened_images, has_nsfw_concept = self.run_safety_checker( output.images, device=self._execution_device, dtype=dtype) return StableDiffusionPipelineOutput(screened_images, has_nsfw_concept) @torch.inference_mode() def get_learned_conditioning(self, c: List[List[str]], *, return_tokens=True, fragment_weights=None): """ Compatibility function for ldm.models.diffusion.ddpm.LatentDiffusion. """ return self.clip_embedder.encode(c, return_tokens=return_tokens, fragment_weights=fragment_weights) @property def cond_stage_model(self): warnings.warn("legacy compatibility layer", DeprecationWarning) return self.clip_embedder @torch.inference_mode() def _tokenize(self, prompt: Union[str, List[str]]): return self.tokenizer( prompt, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="pt", ) @property def channels(self) -> int: """Compatible with DiffusionWrapper""" return self.unet.in_channels def debug_latents(self, latents, msg): with torch.inference_mode(): from ldm.util import debug_image decoded = self.numpy_to_pil(self.decode_latents(latents)) for i, img in enumerate(decoded): debug_image(img, f"latents {msg} {i+1}/{len(decoded)}", debug_status=True)