#!/usr/bin/env python # Copyright (c) 2022 Lincoln D. Stein (https://github.com/lstein) # Before running stable-diffusion on an internet-isolated machine, # run this script from one with internet connectivity. The # two machines must share a common .cache directory. # # Coauthor: Kevin Turner http://github.com/keturn # print("Loading Python libraries...\n") import argparse import io import os import re import shutil import sys import traceback import warnings from argparse import Namespace from pathlib import Path from shutil import get_terminal_size from urllib import request import npyscreen import torch import transformers from diffusers import AutoencoderKL from huggingface_hub import HfFolder from huggingface_hub import login as hf_hub_login from omegaconf import OmegaConf from tqdm import tqdm from transformers import ( AutoProcessor, CLIPSegForImageSegmentation, CLIPTextModel, CLIPTokenizer, ) import invokeai.configs as configs from ...frontend.install.model_install import addModelsForm, process_and_execute from ...frontend.install.widgets import ( CenteredButtonPress, IntTitleSlider, set_min_terminal_size, ) from ..args import PRECISION_CHOICES, Args from ..globals import Globals, global_cache_dir, global_config_dir, global_config_file from .model_install_backend import ( default_dataset, download_from_hf, hf_download_with_resume, recommended_datasets, ) warnings.filterwarnings("ignore") transformers.logging.set_verbosity_error() # --------------------------globals----------------------- Model_dir = "models" Weights_dir = "ldm/stable-diffusion-v1/" # the initial "configs" dir is now bundled in the `invokeai.configs` package Dataset_path = Path(configs.__path__[0]) / "INITIAL_MODELS.yaml" Default_config_file = Path(global_config_dir()) / "models.yaml" SD_Configs = Path(global_config_dir()) / "stable-diffusion" Datasets = OmegaConf.load(Dataset_path) # minimum size for the UI MIN_COLS = 135 MIN_LINES = 45 INIT_FILE_PREAMBLE = """# InvokeAI initialization file # This is the InvokeAI initialization file, which contains command-line default values. # Feel free to edit. If anything goes wrong, you can re-initialize this file by deleting # or renaming it and then running invokeai-configure again. # Place frequently-used startup commands here, one or more per line. # Examples: # --outdir=D:\data\images # --no-nsfw_checker # --web --host=0.0.0.0 # --steps=20 # -Ak_euler_a -C10.0 """ # -------------------------------------------- def postscript(errors: None): if not any(errors): message = f""" ** INVOKEAI INSTALLATION SUCCESSFUL ** If you installed manually from source or with 'pip install': activate the virtual environment then run one of the following commands to start InvokeAI. Web UI: invokeai --web # (connect to http://localhost:9090) invokeai --web --host 0.0.0.0 # (connect to http://your-lan-ip:9090 from another computer on the local network) Command-line interface: invokeai If you installed using an installation script, run: {Globals.root}/invoke.{"bat" if sys.platform == "win32" else "sh"} Add the '--help' argument to see all of the command-line switches available for use. """ else: message = "\n** There were errors during installation. It is possible some of the models were not fully downloaded.\n" for err in errors: message += f"\t - {err}\n" message += "Please check the logs above and correct any issues." print(message) # --------------------------------------------- def yes_or_no(prompt: str, default_yes=True): default = "y" if default_yes else "n" response = input(f"{prompt} [{default}] ") or default if default_yes: return response[0] not in ("n", "N") else: return response[0] in ("y", "Y") # --------------------------------------------- def HfLogin(access_token) -> str: """ Helper for logging in to Huggingface The stdout capture is needed to hide the irrelevant "git credential helper" warning """ capture = io.StringIO() sys.stdout = capture try: hf_hub_login(token=access_token, add_to_git_credential=False) sys.stdout = sys.__stdout__ except Exception as exc: sys.stdout = sys.__stdout__ print(exc) raise exc # ------------------------------------- class ProgressBar: def __init__(self, model_name="file"): self.pbar = None self.name = model_name def __call__(self, block_num, block_size, total_size): if not self.pbar: self.pbar = tqdm( desc=self.name, initial=0, unit="iB", unit_scale=True, unit_divisor=1000, total=total_size, ) self.pbar.update(block_size) # --------------------------------------------- def download_with_progress_bar(model_url: str, model_dest: str, label: str = "the"): try: print(f"Installing {label} model file {model_url}...", end="", file=sys.stderr) if not os.path.exists(model_dest): os.makedirs(os.path.dirname(model_dest), exist_ok=True) request.urlretrieve( model_url, model_dest, ProgressBar(os.path.basename(model_dest)) ) print("...downloaded successfully", file=sys.stderr) else: print("...exists", file=sys.stderr) except Exception: print("...download failed", file=sys.stderr) print(f"Error downloading {label} model", file=sys.stderr) print(traceback.format_exc(), file=sys.stderr) # --------------------------------------------- # this will preload the Bert tokenizer fles def download_bert(): print("Installing bert tokenizer...", file=sys.stderr) with warnings.catch_warnings(): warnings.filterwarnings("ignore", category=DeprecationWarning) from transformers import BertTokenizerFast download_from_hf(BertTokenizerFast, "bert-base-uncased") # --------------------------------------------- def download_sd1_clip(): print("Installing SD1 clip model...", file=sys.stderr) version = "openai/clip-vit-large-patch14" download_from_hf(CLIPTokenizer, version) download_from_hf(CLIPTextModel, version) # --------------------------------------------- def download_sd2_clip(): version = "stabilityai/stable-diffusion-2" print("Installing SD2 clip model...", file=sys.stderr) download_from_hf(CLIPTokenizer, version, subfolder="tokenizer") download_from_hf(CLIPTextModel, version, subfolder="text_encoder") # --------------------------------------------- def download_realesrgan(): print("Installing models from RealESRGAN...", file=sys.stderr) model_url = "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth" wdn_model_url = "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-wdn-x4v3.pth" model_dest = os.path.join( Globals.root, "models/realesrgan/realesr-general-x4v3.pth" ) wdn_model_dest = os.path.join( Globals.root, "models/realesrgan/realesr-general-wdn-x4v3.pth" ) download_with_progress_bar(model_url, model_dest, "RealESRGAN") download_with_progress_bar(wdn_model_url, wdn_model_dest, "RealESRGANwdn") def download_gfpgan(): print("Installing GFPGAN models...", file=sys.stderr) for model in ( [ "https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth", "./models/gfpgan/GFPGANv1.4.pth", ], [ "https://github.com/xinntao/facexlib/releases/download/v0.1.0/detection_Resnet50_Final.pth", "./models/gfpgan/weights/detection_Resnet50_Final.pth", ], [ "https://github.com/xinntao/facexlib/releases/download/v0.2.2/parsing_parsenet.pth", "./models/gfpgan/weights/parsing_parsenet.pth", ], ): model_url, model_dest = model[0], os.path.join(Globals.root, model[1]) download_with_progress_bar(model_url, model_dest, "GFPGAN weights") # --------------------------------------------- def download_codeformer(): print("Installing CodeFormer model file...", file=sys.stderr) model_url = ( "https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/codeformer.pth" ) model_dest = os.path.join(Globals.root, "models/codeformer/codeformer.pth") download_with_progress_bar(model_url, model_dest, "CodeFormer") # --------------------------------------------- def download_clipseg(): print("Installing clipseg model for text-based masking...", file=sys.stderr) CLIPSEG_MODEL = "CIDAS/clipseg-rd64-refined" try: download_from_hf(AutoProcessor, CLIPSEG_MODEL) download_from_hf(CLIPSegForImageSegmentation, CLIPSEG_MODEL) except Exception: print("Error installing clipseg model:") print(traceback.format_exc()) # ------------------------------------- def download_safety_checker(): print("Installing model for NSFW content detection...", file=sys.stderr) try: from diffusers.pipelines.stable_diffusion.safety_checker import ( StableDiffusionSafetyChecker, ) from transformers import AutoFeatureExtractor except ModuleNotFoundError: print("Error installing NSFW checker model:") print(traceback.format_exc()) return safety_model_id = "CompVis/stable-diffusion-safety-checker" print("AutoFeatureExtractor...", file=sys.stderr) download_from_hf(AutoFeatureExtractor, safety_model_id) print("StableDiffusionSafetyChecker...", file=sys.stderr) download_from_hf(StableDiffusionSafetyChecker, safety_model_id) # ------------------------------------- def download_vaes(): print("Installing stabilityai VAE...", file=sys.stderr) try: # first the diffusers version repo_id = "stabilityai/sd-vae-ft-mse" args = dict( cache_dir=global_cache_dir("diffusers"), ) if not AutoencoderKL.from_pretrained(repo_id, **args): raise Exception(f"download of {repo_id} failed") repo_id = "stabilityai/sd-vae-ft-mse-original" model_name = "vae-ft-mse-840000-ema-pruned.ckpt" # next the legacy checkpoint version if not hf_download_with_resume( repo_id=repo_id, model_name=model_name, model_dir=str(Globals.root / Model_dir / Weights_dir), ): raise Exception(f"download of {model_name} failed") except Exception as e: print(f"Error downloading StabilityAI standard VAE: {str(e)}", file=sys.stderr) print(traceback.format_exc(), file=sys.stderr) # ------------------------------------- def get_root(root: str = None) -> str: if root: return root elif os.environ.get("INVOKEAI_ROOT"): return os.environ.get("INVOKEAI_ROOT") else: return Globals.root # ------------------------------------- class editOptsForm(npyscreen.FormMultiPage): # for responsive resizing - disabled # FIX_MINIMUM_SIZE_WHEN_CREATED = False def create(self): program_opts = self.parentApp.program_opts old_opts = self.parentApp.invokeai_opts first_time = not (Globals.root / Globals.initfile).exists() access_token = HfFolder.get_token() window_width, window_height = get_terminal_size() for i in [ "Configure startup settings. You can come back and change these later.", "Use ctrl-N and ctrl-P to move to the ext and

revious fields.", "Use cursor arrows to make a checkbox selection, and space to toggle.", ]: self.add_widget_intelligent( npyscreen.FixedText, value=i, editable=False, color="CONTROL", ) self.nextrely += 1 self.add_widget_intelligent( npyscreen.TitleFixedText, name="== BASIC OPTIONS ==", begin_entry_at=0, editable=False, color="CONTROL", scroll_exit=True, ) self.nextrely -= 1 self.add_widget_intelligent( npyscreen.FixedText, value="Select an output directory for images:", editable=False, color="CONTROL", ) self.outdir = self.add_widget_intelligent( npyscreen.TitleFilename, name="( autocompletes, ctrl-N advances):", value=old_opts.outdir or str(default_output_dir()), select_dir=True, must_exist=False, use_two_lines=False, labelColor="GOOD", begin_entry_at=40, scroll_exit=True, ) self.nextrely += 1 self.add_widget_intelligent( npyscreen.FixedText, value="Activate the NSFW checker to blur images showing potential sexual imagery:", editable=False, color="CONTROL", ) self.safety_checker = self.add_widget_intelligent( npyscreen.Checkbox, name="NSFW checker", value=old_opts.safety_checker, relx=5, scroll_exit=True, ) self.nextrely += 1 for i in [ "If you have an account at HuggingFace you may paste your access token here", 'to allow InvokeAI to download styles & subjects from the "Concept Library".', "See https://huggingface.co/settings/tokens", ]: self.add_widget_intelligent( npyscreen.FixedText, value=i, editable=False, color="CONTROL", ) self.hf_token = self.add_widget_intelligent( npyscreen.TitlePassword, name="Access Token (ctrl-shift-V pastes):", value=access_token, begin_entry_at=42, use_two_lines=False, scroll_exit=True, ) self.nextrely += 1 self.add_widget_intelligent( npyscreen.TitleFixedText, name="== ADVANCED OPTIONS ==", begin_entry_at=0, editable=False, color="CONTROL", scroll_exit=True, ) self.nextrely -= 1 self.add_widget_intelligent( npyscreen.TitleFixedText, name="GPU Management", begin_entry_at=0, editable=False, color="CONTROL", scroll_exit=True, ) self.nextrely -= 1 self.free_gpu_mem = self.add_widget_intelligent( npyscreen.Checkbox, name="Free GPU memory after each generation", value=old_opts.free_gpu_mem, relx=5, scroll_exit=True, ) self.xformers = self.add_widget_intelligent( npyscreen.Checkbox, name="Enable xformers support if available", value=old_opts.xformers, relx=5, scroll_exit=True, ) self.ckpt_convert = self.add_widget_intelligent( npyscreen.Checkbox, name="Load legacy checkpoint models into memory as diffusers models", value=old_opts.ckpt_convert, relx=5, scroll_exit=True, ) self.always_use_cpu = self.add_widget_intelligent( npyscreen.Checkbox, name="Force CPU to be used on GPU systems", value=old_opts.always_use_cpu, relx=5, scroll_exit=True, ) precision = old_opts.precision or ( "float32" if program_opts.full_precision else "auto" ) self.precision = self.add_widget_intelligent( npyscreen.TitleSelectOne, name="Precision", values=PRECISION_CHOICES, value=PRECISION_CHOICES.index(precision), begin_entry_at=3, max_height=len(PRECISION_CHOICES) + 1, scroll_exit=True, ) self.max_loaded_models = self.add_widget_intelligent( IntTitleSlider, name="Number of models to cache in CPU memory (each will use 2-4 GB!)", value=old_opts.max_loaded_models, out_of=10, lowest=1, begin_entry_at=4, scroll_exit=True, ) self.nextrely += 1 self.add_widget_intelligent( npyscreen.FixedText, value="Directory containing embedding/textual inversion files:", editable=False, color="CONTROL", ) self.embedding_path = self.add_widget_intelligent( npyscreen.TitleFilename, name="( autocompletes, ctrl-N advances):", value=str(default_embedding_dir()), select_dir=True, must_exist=False, use_two_lines=False, labelColor="GOOD", begin_entry_at=40, scroll_exit=True, ) self.nextrely += 1 self.add_widget_intelligent( npyscreen.TitleFixedText, name="== LICENSE ==", begin_entry_at=0, editable=False, color="CONTROL", scroll_exit=True, ) self.nextrely -= 1 for i in [ "BY DOWNLOADING THE STABLE DIFFUSION WEIGHT FILES, YOU AGREE TO HAVE READ", "AND ACCEPTED THE CREATIVEML RESPONSIBLE AI LICENSE LOCATED AT", "https://huggingface.co/spaces/CompVis/stable-diffusion-license", ]: self.add_widget_intelligent( npyscreen.FixedText, value=i, editable=False, color="CONTROL", ) self.license_acceptance = self.add_widget_intelligent( npyscreen.Checkbox, name="I accept the CreativeML Responsible AI License", value=not first_time, relx=2, scroll_exit=True, ) self.nextrely += 1 label = ( "DONE" if program_opts.skip_sd_weights or program_opts.default_only else "NEXT" ) self.ok_button = self.add_widget_intelligent( CenteredButtonPress, name=label, relx=(window_width - len(label)) // 2, rely=-3, when_pressed_function=self.on_ok, ) def on_ok(self): options = self.marshall_arguments() if self.validate_field_values(options): self.parentApp.new_opts = options if hasattr(self.parentApp, "model_select"): self.parentApp.setNextForm("MODELS") else: self.parentApp.setNextForm(None) self.editing = False else: self.editing = True def validate_field_values(self, opt: Namespace) -> bool: bad_fields = [] if not opt.license_acceptance: bad_fields.append( "Please accept the license terms before proceeding to model downloads" ) if not Path(opt.outdir).parent.exists(): bad_fields.append( f"The output directory does not seem to be valid. Please check that {str(Path(opt.outdir).parent)} is an existing directory." ) if not Path(opt.embedding_path).parent.exists(): bad_fields.append( f"The embedding directory does not seem to be valid. Please check that {str(Path(opt.embedding_path).parent)} is an existing directory." ) if len(bad_fields) > 0: message = "The following problems were detected and must be corrected:\n" for problem in bad_fields: message += f"* {problem}\n" npyscreen.notify_confirm(message) return False else: return True def marshall_arguments(self): new_opts = Namespace() for attr in [ "outdir", "safety_checker", "free_gpu_mem", "max_loaded_models", "xformers", "always_use_cpu", "embedding_path", "ckpt_convert", ]: setattr(new_opts, attr, getattr(self, attr).value) new_opts.hf_token = self.hf_token.value new_opts.license_acceptance = self.license_acceptance.value new_opts.precision = PRECISION_CHOICES[self.precision.value[0]] return new_opts class EditOptApplication(npyscreen.NPSAppManaged): def __init__(self, program_opts: Namespace, invokeai_opts: Namespace): super().__init__() self.program_opts = program_opts self.invokeai_opts = invokeai_opts self.user_cancelled = False self.user_selections = default_user_selections(program_opts) def onStart(self): npyscreen.setTheme(npyscreen.Themes.DefaultTheme) self.options = self.addForm( "MAIN", editOptsForm, name="InvokeAI Startup Options", ) if not (self.program_opts.skip_sd_weights or self.program_opts.default_only): self.model_select = self.addForm( "MODELS", addModelsForm, name="Install Stable Diffusion Models", multipage=True, ) def new_opts(self): return self.options.marshall_arguments() def edit_opts(program_opts: Namespace, invokeai_opts: Namespace) -> argparse.Namespace: editApp = EditOptApplication(program_opts, invokeai_opts) editApp.run() return editApp.new_opts() def default_startup_options(init_file: Path) -> Namespace: opts = Args().parse_args([]) outdir = Path(opts.outdir) if not outdir.is_absolute(): opts.outdir = str(Globals.root / opts.outdir) if not init_file.exists(): opts.safety_checker = True return opts def default_user_selections(program_opts: Namespace) -> Namespace: return Namespace( starter_models=default_dataset() if program_opts.default_only else recommended_datasets() if program_opts.yes_to_all else dict(), purge_deleted_models=False, scan_directory=None, autoscan_on_startup=None, import_model_paths=None, convert_to_diffusers=None, ) # ------------------------------------- def initialize_rootdir(root: str, yes_to_all: bool = False): print("** INITIALIZING INVOKEAI RUNTIME DIRECTORY **") for name in ( "models", "configs", "embeddings", "text-inversion-output", "text-inversion-training-data", ): os.makedirs(os.path.join(root, name), exist_ok=True) configs_src = Path(configs.__path__[0]) configs_dest = Path(root) / "configs" if not os.path.samefile(configs_src, configs_dest): shutil.copytree(configs_src, configs_dest, dirs_exist_ok=True) # ------------------------------------- def run_console_ui( program_opts: Namespace, initfile: Path = None ) -> (Namespace, Namespace): # parse_args() will read from init file if present invokeai_opts = default_startup_options(initfile) set_min_terminal_size(MIN_COLS, MIN_LINES) editApp = EditOptApplication(program_opts, invokeai_opts) editApp.run() if editApp.user_cancelled: return (None, None) else: return (editApp.new_opts, editApp.user_selections) # ------------------------------------- def write_opts(opts: Namespace, init_file: Path): """ Update the invokeai.init file with values from opts Namespace """ # touch file if it doesn't exist if not init_file.exists(): with open(init_file, "w") as f: f.write(INIT_FILE_PREAMBLE) # We want to write in the changed arguments without clobbering # any other initialization values the user has entered. There is # no good way to do this because of the one-way nature of # argparse: i.e. --outdir could be --outdir, --out, or -o # initfile needs to be replaced with a fully structured format # such as yaml; this is a hack that will work much of the time args_to_skip = re.compile( "^--?(o|out|no-xformer|xformer|no-ckpt|ckpt|free|no-nsfw|nsfw|prec|max_load|embed|always|ckpt|free_gpu)" ) # fix windows paths opts.outdir = opts.outdir.replace("\\", "/") opts.embedding_path = opts.embedding_path.replace("\\", "/") new_file = f"{init_file}.new" try: lines = [x.strip() for x in open(init_file, "r").readlines()] with open(new_file, "w") as out_file: for line in lines: if len(line) > 0 and not args_to_skip.match(line): out_file.write(line + "\n") out_file.write( f""" --outdir={opts.outdir} --embedding_path={opts.embedding_path} --precision={opts.precision} --max_loaded_models={int(opts.max_loaded_models)} --{'no-' if not opts.safety_checker else ''}nsfw_checker --{'no-' if not opts.xformers else ''}xformers --{'no-' if not opts.ckpt_convert else ''}ckpt_convert {'--free_gpu_mem' if opts.free_gpu_mem else ''} {'--always_use_cpu' if opts.always_use_cpu else ''} """ ) except OSError as e: print(f"** An error occurred while writing the init file: {str(e)}") os.replace(new_file, init_file) if opts.hf_token: HfLogin(opts.hf_token) # ------------------------------------- def default_output_dir() -> Path: return Globals.root / "outputs" # ------------------------------------- def default_embedding_dir() -> Path: return Globals.root / "embeddings" # ------------------------------------- def write_default_options(program_opts: Namespace, initfile: Path): opt = default_startup_options(initfile) opt.hf_token = HfFolder.get_token() write_opts(opt, initfile) # ------------------------------------- def main(): parser = argparse.ArgumentParser(description="InvokeAI model downloader") parser.add_argument( "--skip-sd-weights", dest="skip_sd_weights", action=argparse.BooleanOptionalAction, default=False, help="skip downloading the large Stable Diffusion weight files", ) parser.add_argument( "--skip-support-models", dest="skip_support_models", action=argparse.BooleanOptionalAction, default=False, help="skip downloading the support models", ) parser.add_argument( "--full-precision", dest="full_precision", action=argparse.BooleanOptionalAction, type=bool, default=False, help="use 32-bit weights instead of faster 16-bit weights", ) parser.add_argument( "--yes", "-y", dest="yes_to_all", action="store_true", help='answer "yes" to all prompts', ) parser.add_argument( "--default_only", action="store_true", help="when --yes specified, only install the default model", ) parser.add_argument( "--config_file", "-c", dest="config_file", type=str, default=None, help="path to configuration file to create", ) parser.add_argument( "--root_dir", dest="root", type=str, default=None, help="path to root of install directory", ) opt = parser.parse_args() # setting a global here Globals.root = Path(os.path.expanduser(get_root(opt.root) or "")) errors = set() try: models_to_download = default_user_selections(opt) # We check for to see if the runtime directory is correctly initialized. init_file = Path(Globals.root, Globals.initfile) if not init_file.exists() or not global_config_file().exists(): initialize_rootdir(Globals.root, opt.yes_to_all) if opt.yes_to_all: write_default_options(opt, init_file) init_options = Namespace( precision="float32" if opt.full_precision else "float16" ) else: init_options, models_to_download = run_console_ui(opt, init_file) if init_options: write_opts(init_options, init_file) else: print( '\n** CANCELLED AT USER\'S REQUEST. USE THE "invoke.sh" LAUNCHER TO RUN LATER **\n' ) sys.exit(0) if opt.skip_support_models: print("\n** SKIPPING SUPPORT MODEL DOWNLOADS PER USER REQUEST **") else: print("\n** DOWNLOADING SUPPORT MODELS **") download_bert() download_sd1_clip() download_sd2_clip() download_realesrgan() download_gfpgan() download_codeformer() download_clipseg() download_safety_checker() download_vaes() if opt.skip_sd_weights: print("\n** SKIPPING DIFFUSION WEIGHTS DOWNLOAD PER USER REQUEST **") elif models_to_download: print("\n** DOWNLOADING DIFFUSION WEIGHTS **") process_and_execute(opt, models_to_download) postscript(errors=errors) except KeyboardInterrupt: print("\nGoodbye! Come back soon.") # ------------------------------------- if __name__ == "__main__": main()