# Copyright (c) 2023 Lincoln Stein (https://github.com/lstein) and the InvokeAI Development Team """Invokeai configuration system. Arguments and fields are taken from the pydantic definition of the model. Defaults can be set by creating a yaml configuration file that has a top-level key of "InvokeAI" and subheadings for each of the categories returned by `invokeai --help`. The file looks like this: [file: invokeai.yaml] InvokeAI: Web Server: host: 127.0.0.1 port: 9090 allow_origins: [] allow_credentials: true allow_methods: - '*' allow_headers: - '*' Features: esrgan: true internet_available: true log_tokenization: false patchmatch: true ignore_missing_core_models: false Paths: autoimport_dir: autoimport lora_dir: null embedding_dir: null controlnet_dir: null models_dir: models legacy_conf_dir: configs/stable-diffusion db_dir: databases outdir: /home/lstein/invokeai-main/outputs use_memory_db: false Logging: log_handlers: - console log_format: plain log_level: info Model Cache: ram: 13.5 vram: 0.25 lazy_offload: true log_memory_usage: false Device: device: auto precision: auto Generation: sequential_guidance: false attention_type: xformers attention_slice_size: auto force_tiled_decode: false The default name of the configuration file is `invokeai.yaml`, located in INVOKEAI_ROOT. You can replace supersede this by providing any OmegaConf dictionary object initialization time: omegaconf = OmegaConf.load('/tmp/init.yaml') conf = InvokeAIAppConfig() conf.parse_args(conf=omegaconf) InvokeAIAppConfig.parse_args() will parse the contents of `sys.argv` at initialization time. You may pass a list of strings in the optional `argv` argument to use instead of the system argv: conf.parse_args(argv=['--log_tokenization']) It is also possible to set a value at initialization time. However, if you call parse_args() it may be overwritten. conf = InvokeAIAppConfig(log_tokenization=True) conf.parse_args(argv=['--no-log_tokenization']) conf.log_tokenization # False To avoid this, use `get_config()` to retrieve the application-wide configuration object. This will retain any properties set at object creation time: conf = InvokeAIAppConfig.get_config(log_tokenization=True) conf.parse_args(argv=['--no-log_tokenization']) conf.log_tokenization # True Any setting can be overwritten by setting an environment variable of form: "INVOKEAI_", as in: export INVOKEAI_port=8080 Order of precedence (from highest): 1) initialization options 2) command line options 3) environment variable options 4) config file options 5) pydantic defaults Typical usage at the top level file: from invokeai.app.services.config import InvokeAIAppConfig # get global configuration and print its cache size conf = InvokeAIAppConfig.get_config() conf.parse_args() print(conf.ram_cache_size) Typical usage in a backend module: from invokeai.app.services.config import InvokeAIAppConfig # get global configuration and print its cache size value conf = InvokeAIAppConfig.get_config() print(conf.ram_cache_size) Computed properties: The InvokeAIAppConfig object has a series of properties that resolve paths relative to the runtime root directory. They each return a Path object: root_path - path to InvokeAI root output_path - path to default outputs directory conf - alias for the above embedding_path - path to the embeddings directory lora_path - path to the LoRA directory In most cases, you will want to create a single InvokeAIAppConfig object for the entire application. The InvokeAIAppConfig.get_config() function does this: config = InvokeAIAppConfig.get_config() config.parse_args() # read values from the command line/config file print(config.root) # Subclassing If you wish to create a similar class, please subclass the `InvokeAISettings` class and define a Literal field named "type", which is set to the desired top-level name. For example, to create a "InvokeBatch" configuration, define like this: class InvokeBatch(InvokeAISettings): type: Literal["InvokeBatch"] = "InvokeBatch" node_count : int = Field(default=1, description="Number of nodes to run on", json_schema_extra=dict(category='Resources')) cpu_count : int = Field(default=8, description="Number of GPUs to run on per node", json_schema_extra=dict(category='Resources')) This will now read and write from the "InvokeBatch" section of the config file, look for environment variables named INVOKEBATCH_*, and accept the command-line arguments `--node_count` and `--cpu_count`. The two configs are kept in separate sections of the config file: # invokeai.yaml InvokeBatch: Resources: node_count: 1 cpu_count: 8 InvokeAI: Paths: root: /home/lstein/invokeai-main legacy_conf_dir: configs/stable-diffusion outdir: outputs ... """ from __future__ import annotations import os import re from pathlib import Path from typing import Any, ClassVar, Dict, List, Literal, Optional from omegaconf import DictConfig, OmegaConf from pydantic import BaseModel, Field, field_validator from pydantic.config import JsonDict from pydantic_settings import SettingsConfigDict from invokeai.backend.model_hash.model_hash import HASHING_ALGORITHMS from .config_base import InvokeAISettings INIT_FILE = Path("invokeai.yaml") DB_FILE = Path("invokeai.db") LEGACY_INIT_FILE = Path("invokeai.init") DEFAULT_RAM_CACHE = 10.0 DEFAULT_VRAM_CACHE = 0.25 DEFAULT_CONVERT_CACHE = 20.0 class Categories(object): """Category headers for configuration variable groups.""" WebServer: JsonDict = {"category": "Web Server"} Features: JsonDict = {"category": "Features"} Paths: JsonDict = {"category": "Paths"} Logging: JsonDict = {"category": "Logging"} Development: JsonDict = {"category": "Development"} CLIArgs: JsonDict = {"category": "CLIArgs"} ModelInstall: JsonDict = {"category": "Model Install"} ModelCache: JsonDict = {"category": "Model Cache"} Device: JsonDict = {"category": "Device"} Generation: JsonDict = {"category": "Generation"} Queue: JsonDict = {"category": "Queue"} Nodes: JsonDict = {"category": "Nodes"} MemoryPerformance: JsonDict = {"category": "Memory/Performance"} Deprecated: JsonDict = {"category": "Deprecated"} class URLRegexToken(BaseModel): url_regex: str = Field(description="Regular expression to match against the URL") token: str = Field(description="Token to use when the URL matches the regex") @field_validator("url_regex") @classmethod def validate_url_regex(cls, v: str) -> str: """Validate that the value is a valid regex.""" try: re.compile(v) except re.error as e: raise ValueError(f"Invalid regex: {e}") return v class InvokeAIAppConfig(InvokeAISettings): """Invoke App Configuration Attributes: host: **Web Server**: IP address to bind to. Use `0.0.0.0` to serve to your local network. port: **Web Server**: Port to bind to. allow_origins: **Web Server**: Allowed CORS origins. allow_credentials: **Web Server**: Allow CORS credentials. allow_methods: **Web Server**: Methods allowed for CORS. allow_headers: **Web Server**: Headers allowed for CORS. ssl_certfile: **Web Server**: SSL certificate file for HTTPS. ssl_keyfile: **Web Server**: SSL key file for HTTPS. esrgan: **Features**: Enables or disables the upscaling code. internet_available: **Features**: If true, attempt to download models on the fly; otherwise only use local models. log_tokenization: **Features**: Enable logging of parsed prompt tokens. patchmatch: **Features**: Enable patchmatch inpaint code. ignore_missing_core_models: **Features**: Ignore missing core models on startup. If `True`, the app will attempt to download missing models on startup. root: **Paths**: The InvokeAI runtime root directory. autoimport_dir: **Paths**: Path to a directory of models files to be imported on startup. models_dir: **Paths**: Path to the models directory. convert_cache_dir: **Paths**: Path to the converted models cache directory. When loading a non-diffusers model, it will be converted and store on disk at this location. legacy_conf_dir: **Paths**: Path to directory of legacy checkpoint config files. db_dir: **Paths**: Path to InvokeAI databases directory. outdir: **Paths**: Path to directory for outputs. custom_nodes_dir: **Paths**: Path to directory for custom nodes. from_file: **Paths**: Take command input from the indicated file (command-line client only). log_handlers: **Logging**: Log handler. Valid options are "console", "file=", "syslog=path|address:host:port", "http=". log_format: **Logging**: Log format. Use "plain" for text-only, "color" for colorized output, "legacy" for 2.3-style logging and "syslog" for syslog-style. log_level: **Logging**: Emit logging messages at this level or higher. log_sql: **Logging**: Log SQL queries. `log_level` must be `debug` for this to do anything. Extremely verbose. use_memory_db: **Development**: Use in-memory database. Useful for development. dev_reload: **Development**: Automatically reload when Python sources are changed. Does not reload node definitions. profile_graphs: **Development**: Enable graph profiling using `cProfile`. profile_prefix: **Development**: An optional prefix for profile output files. profiles_dir: **Development**: Path to profiles output directory. version: **CLIArgs**: CLI arg - show InvokeAI version and exit. hashing_algorithm: **Model Install**: Model hashing algorthim for model installs. 'blake3' is best for SSDs. 'blake3_single' is best for spinning disk HDDs. 'random' disables hashing, instead assigning a UUID to models. Useful when using a memory db to reduce model installation time, or if you don't care about storing stable hashes for models. Alternatively, any other hashlib algorithm is accepted, though these are not nearly as performant as blake3. remote_api_tokens: **Model Install**: List of regular expression and token pairs used when downloading models from URLs. The download URL is tested against the regex, and if it matches, the token is provided in as a Bearer token. ram: **Model Cache**: Maximum memory amount used by memory model cache for rapid switching (GB). vram: **Model Cache**: Amount of VRAM reserved for model storage (GB) convert_cache: **Model Cache**: Maximum size of on-disk converted models cache (GB) lazy_offload: **Model Cache**: Keep models in VRAM until their space is needed. log_memory_usage: **Model Cache**: If True, a memory snapshot will be captured before and after every model cache operation, and the result will be logged (at debug level). There is a time cost to capturing the memory snapshots, so it is recommended to only enable this feature if you are actively inspecting the model cache's behaviour. device: **Device**: Preferred execution device. `auto` will choose the device depending on the hardware platform and the installed torch capabilities. precision: **Device**: Floating point precision. `float16` will consume half the memory of `float32` but produce slightly lower-quality images. The `auto` setting will guess the proper precision based on your video card and operating system. sequential_guidance: **Generation**: Whether to calculate guidance in serial instead of in parallel, lowering memory requirements. attention_type: **Generation**: Attention type. attention_slice_size: **Generation**: Slice size, valid when attention_type=="sliced". force_tiled_decode: **Generation**: Whether to enable tiled VAE decode (reduces memory consumption with some performance penalty). png_compress_level: **Generation**: The compress_level setting of PIL.Image.save(), used for PNG encoding. All settings are lossless. 0 = no compression, 1 = fastest with slightly larger filesize, 9 = slowest with smallest filesize. 1 is typically the best setting. max_queue_size: **Queue**: Maximum number of items in the session queue. allow_nodes: **Nodes**: List of nodes to allow. Omit to allow all. deny_nodes: **Nodes**: List of nodes to deny. Omit to deny none. node_cache_size: **Nodes**: How many cached nodes to keep in memory. """ singleton_config: ClassVar[Optional[InvokeAIAppConfig]] = None singleton_init: ClassVar[Optional[Dict[str, Any]]] = None # fmt: off type: Literal["InvokeAI"] = "InvokeAI" # WEB host : str = Field(default="127.0.0.1", description="IP address to bind to. Use `0.0.0.0` to serve to your local network.", json_schema_extra=Categories.WebServer) port : int = Field(default=9090, description="Port to bind to.", json_schema_extra=Categories.WebServer) allow_origins : List[str] = Field(default=[], description="Allowed CORS origins.", json_schema_extra=Categories.WebServer) allow_credentials : bool = Field(default=True, description="Allow CORS credentials.", json_schema_extra=Categories.WebServer) allow_methods : List[str] = Field(default=["*"], description="Methods allowed for CORS.", json_schema_extra=Categories.WebServer) allow_headers : List[str] = Field(default=["*"], description="Headers allowed for CORS.", json_schema_extra=Categories.WebServer) # SSL options correspond to https://www.uvicorn.org/settings/#https ssl_certfile : Optional[Path] = Field(default=None, description="SSL certificate file for HTTPS.", json_schema_extra=Categories.WebServer) ssl_keyfile : Optional[Path] = Field(default=None, description="SSL key file for HTTPS.", json_schema_extra=Categories.WebServer) # FEATURES esrgan : bool = Field(default=True, description="Enables or disables the upscaling code.", json_schema_extra=Categories.Features) # TODO(psyche): This is not used anywhere. internet_available : bool = Field(default=True, description="If true, attempt to download models on the fly; otherwise only use local models.", json_schema_extra=Categories.Features) log_tokenization : bool = Field(default=False, description="Enable logging of parsed prompt tokens.", json_schema_extra=Categories.Features) patchmatch : bool = Field(default=True, description="Enable patchmatch inpaint code.", json_schema_extra=Categories.Features) ignore_missing_core_models : bool = Field(default=False, description='Ignore missing core models on startup. If `True`, the app will attempt to download missing models on startup.', json_schema_extra=Categories.Features) # PATHS root : Optional[Path] = Field(default=None, description='The InvokeAI runtime root directory.', json_schema_extra=Categories.Paths) autoimport_dir : Path = Field(default=Path('autoimport'), description='Path to a directory of models files to be imported on startup.', json_schema_extra=Categories.Paths) models_dir : Path = Field(default=Path('models'), description='Path to the models directory.', json_schema_extra=Categories.Paths) convert_cache_dir : Path = Field(default=Path('models/.cache'), description='Path to the converted models cache directory. When loading a non-diffusers model, it will be converted and store on disk at this location.', json_schema_extra=Categories.Paths) legacy_conf_dir : Path = Field(default=Path('configs/stable-diffusion'), description='Path to directory of legacy checkpoint config files.', json_schema_extra=Categories.Paths) db_dir : Path = Field(default=Path('databases'), description='Path to InvokeAI databases directory.', json_schema_extra=Categories.Paths) outdir : Path = Field(default=Path('outputs'), description='Path to directory for outputs.', json_schema_extra=Categories.Paths) custom_nodes_dir : Path = Field(default=Path('nodes'), description='Path to directory for custom nodes.', json_schema_extra=Categories.Paths) # TODO(psyche): This is not used anywhere. from_file : Optional[Path] = Field(default=None, description='Take command input from the indicated file (command-line client only).', json_schema_extra=Categories.Paths) # LOGGING log_handlers : List[str] = Field(default=["console"], description='Log handler. Valid options are "console", "file=", "syslog=path|address:host:port", "http=".', json_schema_extra=Categories.Logging) # note - would be better to read the log_format values from logging.py, but this creates circular dependencies issues log_format : Literal['plain', 'color', 'syslog', 'legacy'] = Field(default="color", description='Log format. Use "plain" for text-only, "color" for colorized output, "legacy" for 2.3-style logging and "syslog" for syslog-style.', json_schema_extra=Categories.Logging) log_level : Literal["debug", "info", "warning", "error", "critical"] = Field(default="info", description="Emit logging messages at this level or higher.", json_schema_extra=Categories.Logging) log_sql : bool = Field(default=False, description="Log SQL queries. `log_level` must be `debug` for this to do anything. Extremely verbose.", json_schema_extra=Categories.Logging) # Development use_memory_db : bool = Field(default=False, description='Use in-memory database. Useful for development.', json_schema_extra=Categories.Development) dev_reload : bool = Field(default=False, description="Automatically reload when Python sources are changed. Does not reload node definitions.", json_schema_extra=Categories.Development) profile_graphs : bool = Field(default=False, description="Enable graph profiling using `cProfile`.", json_schema_extra=Categories.Development) profile_prefix : Optional[str] = Field(default=None, description="An optional prefix for profile output files.", json_schema_extra=Categories.Development) profiles_dir : Path = Field(default=Path('profiles'), description="Path to profiles output directory.", json_schema_extra=Categories.Development) version : bool = Field(default=False, description="CLI arg - show InvokeAI version and exit.", json_schema_extra=Categories.CLIArgs) # CACHE ram : float = Field(default=DEFAULT_RAM_CACHE, gt=0, description="Maximum memory amount used by memory model cache for rapid switching (GB).", json_schema_extra=Categories.ModelCache, ) vram : float = Field(default=DEFAULT_VRAM_CACHE, ge=0, description="Amount of VRAM reserved for model storage (GB)", json_schema_extra=Categories.ModelCache, ) convert_cache : float = Field(default=DEFAULT_CONVERT_CACHE, ge=0, description="Maximum size of on-disk converted models cache (GB)", json_schema_extra=Categories.ModelCache) lazy_offload : bool = Field(default=True, description="Keep models in VRAM until their space is needed.", json_schema_extra=Categories.ModelCache, ) log_memory_usage : bool = Field(default=False, description="If True, a memory snapshot will be captured before and after every model cache operation, and the result will be logged (at debug level). There is a time cost to capturing the memory snapshots, so it is recommended to only enable this feature if you are actively inspecting the model cache's behaviour.", json_schema_extra=Categories.ModelCache) # DEVICE device : Literal["auto", "cpu", "cuda", "cuda:1", "mps"] = Field(default="auto", description="Preferred execution device. `auto` will choose the device depending on the hardware platform and the installed torch capabilities.", json_schema_extra=Categories.Device) precision : Literal["auto", "float16", "bfloat16", "float32", "autocast"] = Field(default="auto", description="Floating point precision. `float16` will consume half the memory of `float32` but produce slightly lower-quality images. The `auto` setting will guess the proper precision based on your video card and operating system.", json_schema_extra=Categories.Device) # GENERATION sequential_guidance : bool = Field(default=False, description="Whether to calculate guidance in serial instead of in parallel, lowering memory requirements.", json_schema_extra=Categories.Generation) attention_type : Literal["auto", "normal", "xformers", "sliced", "torch-sdp"] = Field(default="auto", description="Attention type.", json_schema_extra=Categories.Generation) attention_slice_size: Literal["auto", "balanced", "max", 1, 2, 3, 4, 5, 6, 7, 8] = Field(default="auto", description='Slice size, valid when attention_type=="sliced".', json_schema_extra=Categories.Generation) force_tiled_decode : bool = Field(default=False, description="Whether to enable tiled VAE decode (reduces memory consumption with some performance penalty).", json_schema_extra=Categories.Generation) png_compress_level : int = Field(default=1, description="The compress_level setting of PIL.Image.save(), used for PNG encoding. All settings are lossless. 0 = no compression, 1 = fastest with slightly larger filesize, 9 = slowest with smallest filesize. 1 is typically the best setting.", json_schema_extra=Categories.Generation) # QUEUE max_queue_size : int = Field(default=10000, gt=0, description="Maximum number of items in the session queue.", json_schema_extra=Categories.Queue) # NODES allow_nodes : Optional[List[str]] = Field(default=None, description="List of nodes to allow. Omit to allow all.", json_schema_extra=Categories.Nodes) deny_nodes : Optional[List[str]] = Field(default=None, description="List of nodes to deny. Omit to deny none.", json_schema_extra=Categories.Nodes) node_cache_size : int = Field(default=512, description="How many cached nodes to keep in memory.", json_schema_extra=Categories.Nodes) # MODEL INSTALL hashing_algorithm : HASHING_ALGORITHMS = Field(default="blake3", description="Model hashing algorthim for model installs. 'blake3' is best for SSDs. 'blake3_single' is best for spinning disk HDDs. 'random' disables hashing, instead assigning a UUID to models. Useful when using a memory db to reduce model installation time, or if you don't care about storing stable hashes for models. Alternatively, any other hashlib algorithm is accepted, though these are not nearly as performant as blake3.", json_schema_extra=Categories.ModelInstall) remote_api_tokens : Optional[list[URLRegexToken]] = Field( default=None, description="List of regular expression and token pairs used when downloading models from URLs. The download URL is tested against the regex, and if it matches, the token is provided in as a Bearer token.", json_schema_extra=Categories.ModelInstall ) # TODO(psyche): Can we just remove these then? # DEPRECATED FIELDS - STILL HERE IN ORDER TO OBTAN VALUES FROM PRE-3.1 CONFIG FILES always_use_cpu : bool = Field(default=False, description="If true, use the CPU for rendering even if a GPU is available.", json_schema_extra=Categories.Deprecated) max_cache_size : Optional[float] = Field(default=None, gt=0, description="Maximum memory amount used by model cache for rapid switching", json_schema_extra=Categories.Deprecated) max_vram_cache_size : Optional[float] = Field(default=None, ge=0, description="Amount of VRAM reserved for model storage", json_schema_extra=Categories.Deprecated) xformers_enabled : bool = Field(default=True, description="Enable/disable memory-efficient attention", json_schema_extra=Categories.Deprecated) tiled_decode : bool = Field(default=False, description="Whether to enable tiled VAE decode (reduces memory consumption with some performance penalty)", json_schema_extra=Categories.Deprecated) lora_dir : Optional[Path] = Field(default=None, description='Path to a directory of LoRA/LyCORIS models to be imported on startup.', json_schema_extra=Categories.Deprecated) embedding_dir : Optional[Path] = Field(default=None, description='Path to a directory of Textual Inversion embeddings to be imported on startup.', json_schema_extra=Categories.Deprecated) controlnet_dir : Optional[Path] = Field(default=None, description='Path to a directory of ControlNet embeddings to be imported on startup.', json_schema_extra=Categories.Deprecated) conf_path : Path = Field(default=Path('configs/models.yaml'), description='Path to models definition file', json_schema_extra=Categories.Deprecated) # this is not referred to in the source code and can be removed entirely #free_gpu_mem : Optional[bool] = Field(default=None, description="If true, purge model from GPU after each generation.", json_schema_extra=Categories.MemoryPerformance) # See InvokeAIAppConfig subclass below for CACHE and DEVICE categories # fmt: on model_config = SettingsConfigDict(validate_assignment=True, env_prefix="INVOKEAI") def parse_args( self, argv: Optional[list[str]] = None, conf: Optional[DictConfig] = None, clobber: Optional[bool] = False, ) -> None: """ Update settings with contents of init file, environment, and command-line settings. :param conf: alternate Omegaconf dictionary object :param argv: aternate sys.argv list :param clobber: ovewrite any initialization parameters passed during initialization """ # Set the runtime root directory. We parse command-line switches here # in order to pick up the --root_dir option. super().parse_args(argv) loaded_conf = None if conf is None: try: loaded_conf = OmegaConf.load(self.root_dir / INIT_FILE) except Exception: pass if isinstance(loaded_conf, DictConfig): InvokeAISettings.initconf = loaded_conf else: InvokeAISettings.initconf = conf # parse args again in order to pick up settings in configuration file super().parse_args(argv) if self.singleton_init and not clobber: # When setting values in this way, set validate_assignment to true if you want to validate the value. for k, v in self.singleton_init.items(): setattr(self, k, v) @classmethod def get_config(cls, **kwargs: Any) -> InvokeAIAppConfig: """Return a singleton InvokeAIAppConfig configuration object.""" if ( cls.singleton_config is None or type(cls.singleton_config) is not cls or (kwargs and cls.singleton_init != kwargs) ): cls.singleton_config = cls(**kwargs) cls.singleton_init = kwargs return cls.singleton_config @property def root_path(self) -> Path: """Path to the runtime root directory.""" if self.root: root = Path(self.root).expanduser().absolute() else: root = self.find_root().expanduser().absolute() self.root = root # insulate ourselves from relative paths that may change return root.resolve() @property def root_dir(self) -> Path: """Alias for above.""" return self.root_path def _resolve(self, partial_path: Path) -> Path: return (self.root_path / partial_path).resolve() @property def init_file_path(self) -> Path: """Path to invokeai.yaml.""" resolved_path = self._resolve(INIT_FILE) assert resolved_path is not None return resolved_path @property def output_path(self) -> Optional[Path]: """Path to defaults outputs directory.""" return self._resolve(self.outdir) @property def db_path(self) -> Path: """Path to the invokeai.db file.""" db_dir = self._resolve(self.db_dir) assert db_dir is not None return db_dir / DB_FILE @property def model_conf_path(self) -> Path: """Path to models configuration file.""" return self._resolve(self.conf_path) @property def legacy_conf_path(self) -> Path: """Path to directory of legacy configuration files (e.g. v1-inference.yaml).""" return self._resolve(self.legacy_conf_dir) @property def models_path(self) -> Path: """Path to the models directory.""" return self._resolve(self.models_dir) @property def models_convert_cache_path(self) -> Path: """Path to the converted cache models directory.""" return self._resolve(self.convert_cache_dir) @property def custom_nodes_path(self) -> Path: """Path to the custom nodes directory.""" custom_nodes_path = self._resolve(self.custom_nodes_dir) assert custom_nodes_path is not None return custom_nodes_path # the following methods support legacy calls leftover from the Globals era @property def full_precision(self) -> bool: """Return true if precision set to float32.""" return self.precision == "float32" @property def try_patchmatch(self) -> bool: """Return true if patchmatch true.""" return self.patchmatch @property def nsfw_checker(self) -> bool: """Return value for NSFW checker. The NSFW node is always active and disabled from Web UI.""" return True @property def invisible_watermark(self) -> bool: """Return value of invisible watermark. It is always active and disabled from Web UI.""" return True @property def ram_cache_size(self) -> float: """Return the ram cache size using the legacy or modern setting (GB).""" return self.max_cache_size or self.ram @property def vram_cache_size(self) -> float: """Return the vram cache size using the legacy or modern setting (GB).""" return self.max_vram_cache_size or self.vram @property def convert_cache_size(self) -> float: """Return the convert cache size on disk (GB).""" return self.convert_cache @property def use_cpu(self) -> bool: """Return true if the device is set to CPU or the always_use_cpu flag is set.""" return self.always_use_cpu or self.device == "cpu" @property def disable_xformers(self) -> bool: """Return true if enable_xformers is false (reversed logic) and attention type is not set to xformers.""" disabled_in_config = not self.xformers_enabled return disabled_in_config and self.attention_type != "xformers" @property def profiles_path(self) -> Path: """Path to the graph profiles directory.""" return self._resolve(self.profiles_dir) @staticmethod def find_root() -> Path: """Choose the runtime root directory when not specified on command line or init file.""" return _find_root() @staticmethod def generate_docstrings() -> str: """Helper function for mkdocs. Generates a docstring for the InvokeAIAppConfig class. You shouldn't run this manually. Instead, run `scripts/update-config-docstring.py` to update the docstring. A makefile target is also available: `make update-config-docstring`. See that script for more information about why this is necessary. """ docstring = ' """Invoke App Configuration\n\n' docstring += " Attributes:" field_descriptions: dict[str, list[str]] = {} for k, v in InvokeAIAppConfig.model_fields.items(): if not isinstance(v.json_schema_extra, dict): # Should never happen continue category = v.json_schema_extra.get("category", None) if not isinstance(category, str) or category == "Deprecated": continue if not field_descriptions.get(category): field_descriptions[category] = [] field_descriptions[category].append(f" {k}: **{category}**: {v.description}") for c in [ "Web Server", "Features", "Paths", "Logging", "Development", "CLIArgs", "Model Install", "Model Cache", "Device", "Generation", "Queue", "Nodes", ]: docstring += "\n" docstring += "\n".join(field_descriptions[c]) docstring += '\n """' return docstring def get_invokeai_config(**kwargs: Any) -> InvokeAIAppConfig: """Legacy function which returns InvokeAIAppConfig.get_config().""" return InvokeAIAppConfig.get_config(**kwargs) def _find_root() -> Path: venv = Path(os.environ.get("VIRTUAL_ENV") or ".") if os.environ.get("INVOKEAI_ROOT"): root = Path(os.environ["INVOKEAI_ROOT"]) elif any((venv.parent / x).exists() for x in [INIT_FILE, LEGACY_INIT_FILE]): root = (venv.parent).resolve() else: root = Path("~/invokeai").expanduser().resolve() return root