# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654) from typing import Optional import torch from invokeai.app.invocations.baseinvocation import BaseInvocation, BaseInvocationOutput, invocation, invocation_output from invokeai.app.invocations.constants import LATENT_SCALE_FACTOR from invokeai.app.invocations.fields import ( BoundingBoxField, ColorField, ConditioningField, DenoiseMaskField, FieldDescriptions, ImageField, Input, InputField, LatentsField, OutputField, TensorField, UIComponent, ) from invokeai.app.services.images.images_common import ImageDTO from invokeai.app.services.shared.invocation_context import InvocationContext """ Primitives: Boolean, Integer, Float, String, Image, Latents, Conditioning, Color - primitive nodes - primitive outputs - primitive collection outputs """ # region Boolean @invocation_output("boolean_output") class BooleanOutput(BaseInvocationOutput): """Base class for nodes that output a single boolean""" value: bool = OutputField(description="The output boolean") @invocation_output("boolean_collection_output") class BooleanCollectionOutput(BaseInvocationOutput): """Base class for nodes that output a collection of booleans""" collection: list[bool] = OutputField( description="The output boolean collection", ) @invocation( "boolean", title="Boolean Primitive", tags=["primitives", "boolean"], category="primitives", version="1.0.1" ) class BooleanInvocation(BaseInvocation): """A boolean primitive value""" value: bool = InputField(default=False, description="The boolean value") def invoke(self, context: InvocationContext) -> BooleanOutput: return BooleanOutput(value=self.value) @invocation( "boolean_collection", title="Boolean Collection Primitive", tags=["primitives", "boolean", "collection"], category="primitives", version="1.0.2", ) class BooleanCollectionInvocation(BaseInvocation): """A collection of boolean primitive values""" collection: list[bool] = InputField(default=[], description="The collection of boolean values") def invoke(self, context: InvocationContext) -> BooleanCollectionOutput: return BooleanCollectionOutput(collection=self.collection) # endregion # region Integer @invocation_output("integer_output") class IntegerOutput(BaseInvocationOutput): """Base class for nodes that output a single integer""" value: int = OutputField(description="The output integer") @invocation_output("integer_collection_output") class IntegerCollectionOutput(BaseInvocationOutput): """Base class for nodes that output a collection of integers""" collection: list[int] = OutputField( description="The int collection", ) @invocation( "integer", title="Integer Primitive", tags=["primitives", "integer"], category="primitives", version="1.0.1" ) class IntegerInvocation(BaseInvocation): """An integer primitive value""" value: int = InputField(default=0, description="The integer value") def invoke(self, context: InvocationContext) -> IntegerOutput: return IntegerOutput(value=self.value) @invocation( "integer_collection", title="Integer Collection Primitive", tags=["primitives", "integer", "collection"], category="primitives", version="1.0.2", ) class IntegerCollectionInvocation(BaseInvocation): """A collection of integer primitive values""" collection: list[int] = InputField(default=[], description="The collection of integer values") def invoke(self, context: InvocationContext) -> IntegerCollectionOutput: return IntegerCollectionOutput(collection=self.collection) # endregion # region Float @invocation_output("float_output") class FloatOutput(BaseInvocationOutput): """Base class for nodes that output a single float""" value: float = OutputField(description="The output float") @invocation_output("float_collection_output") class FloatCollectionOutput(BaseInvocationOutput): """Base class for nodes that output a collection of floats""" collection: list[float] = OutputField( description="The float collection", ) @invocation("float", title="Float Primitive", tags=["primitives", "float"], category="primitives", version="1.0.1") class FloatInvocation(BaseInvocation): """A float primitive value""" value: float = InputField(default=0.0, description="The float value") def invoke(self, context: InvocationContext) -> FloatOutput: return FloatOutput(value=self.value) @invocation( "float_collection", title="Float Collection Primitive", tags=["primitives", "float", "collection"], category="primitives", version="1.0.2", ) class FloatCollectionInvocation(BaseInvocation): """A collection of float primitive values""" collection: list[float] = InputField(default=[], description="The collection of float values") def invoke(self, context: InvocationContext) -> FloatCollectionOutput: return FloatCollectionOutput(collection=self.collection) # endregion # region String @invocation_output("string_output") class StringOutput(BaseInvocationOutput): """Base class for nodes that output a single string""" value: str = OutputField(description="The output string") @invocation_output("string_collection_output") class StringCollectionOutput(BaseInvocationOutput): """Base class for nodes that output a collection of strings""" collection: list[str] = OutputField( description="The output strings", ) @invocation("string", title="String Primitive", tags=["primitives", "string"], category="primitives", version="1.0.1") class StringInvocation(BaseInvocation): """A string primitive value""" value: str = InputField(default="", description="The string value", ui_component=UIComponent.Textarea) def invoke(self, context: InvocationContext) -> StringOutput: return StringOutput(value=self.value) @invocation( "string_collection", title="String Collection Primitive", tags=["primitives", "string", "collection"], category="primitives", version="1.0.2", ) class StringCollectionInvocation(BaseInvocation): """A collection of string primitive values""" collection: list[str] = InputField(default=[], description="The collection of string values") def invoke(self, context: InvocationContext) -> StringCollectionOutput: return StringCollectionOutput(collection=self.collection) # endregion # region Image @invocation_output("image_output") class ImageOutput(BaseInvocationOutput): """Base class for nodes that output a single image""" image: ImageField = OutputField(description="The output image") width: int = OutputField(description="The width of the image in pixels") height: int = OutputField(description="The height of the image in pixels") @classmethod def build(cls, image_dto: ImageDTO) -> "ImageOutput": return cls( image=ImageField(image_name=image_dto.image_name), width=image_dto.width, height=image_dto.height, ) @invocation_output("image_collection_output") class ImageCollectionOutput(BaseInvocationOutput): """Base class for nodes that output a collection of images""" collection: list[ImageField] = OutputField( description="The output images", ) @invocation("image", title="Image Primitive", tags=["primitives", "image"], category="primitives", version="1.0.2") class ImageInvocation(BaseInvocation): """An image primitive value""" image: ImageField = InputField(description="The image to load") def invoke(self, context: InvocationContext) -> ImageOutput: image = context.images.get_pil(self.image.image_name) return ImageOutput( image=ImageField(image_name=self.image.image_name), width=image.width, height=image.height, ) @invocation( "image_collection", title="Image Collection Primitive", tags=["primitives", "image", "collection"], category="primitives", version="1.0.1", ) class ImageCollectionInvocation(BaseInvocation): """A collection of image primitive values""" collection: list[ImageField] = InputField(description="The collection of image values") def invoke(self, context: InvocationContext) -> ImageCollectionOutput: return ImageCollectionOutput(collection=self.collection) # endregion # region DenoiseMask @invocation_output("denoise_mask_output") class DenoiseMaskOutput(BaseInvocationOutput): """Base class for nodes that output a single image""" denoise_mask: DenoiseMaskField = OutputField(description="Mask for denoise model run") @classmethod def build( cls, mask_name: str, masked_latents_name: Optional[str] = None, gradient: bool = False ) -> "DenoiseMaskOutput": return cls( denoise_mask=DenoiseMaskField( mask_name=mask_name, masked_latents_name=masked_latents_name, gradient=gradient ), ) # endregion # region Latents @invocation_output("latents_output") class LatentsOutput(BaseInvocationOutput): """Base class for nodes that output a single latents tensor""" latents: LatentsField = OutputField(description=FieldDescriptions.latents) width: int = OutputField(description=FieldDescriptions.width) height: int = OutputField(description=FieldDescriptions.height) @classmethod def build(cls, latents_name: str, latents: torch.Tensor, seed: Optional[int] = None) -> "LatentsOutput": return cls( latents=LatentsField(latents_name=latents_name, seed=seed), width=latents.size()[3] * LATENT_SCALE_FACTOR, height=latents.size()[2] * LATENT_SCALE_FACTOR, ) @invocation_output("latents_collection_output") class LatentsCollectionOutput(BaseInvocationOutput): """Base class for nodes that output a collection of latents tensors""" collection: list[LatentsField] = OutputField( description=FieldDescriptions.latents, ) @invocation( "latents", title="Latents Primitive", tags=["primitives", "latents"], category="primitives", version="1.0.2" ) class LatentsInvocation(BaseInvocation): """A latents tensor primitive value""" latents: LatentsField = InputField(description="The latents tensor", input=Input.Connection) def invoke(self, context: InvocationContext) -> LatentsOutput: latents = context.tensors.load(self.latents.latents_name) return LatentsOutput.build(self.latents.latents_name, latents) @invocation( "latents_collection", title="Latents Collection Primitive", tags=["primitives", "latents", "collection"], category="primitives", version="1.0.1", ) class LatentsCollectionInvocation(BaseInvocation): """A collection of latents tensor primitive values""" collection: list[LatentsField] = InputField( description="The collection of latents tensors", ) def invoke(self, context: InvocationContext) -> LatentsCollectionOutput: return LatentsCollectionOutput(collection=self.collection) # endregion # region Color @invocation_output("color_output") class ColorOutput(BaseInvocationOutput): """Base class for nodes that output a single color""" color: ColorField = OutputField(description="The output color") @invocation_output("color_collection_output") class ColorCollectionOutput(BaseInvocationOutput): """Base class for nodes that output a collection of colors""" collection: list[ColorField] = OutputField( description="The output colors", ) @invocation("color", title="Color Primitive", tags=["primitives", "color"], category="primitives", version="1.0.1") class ColorInvocation(BaseInvocation): """A color primitive value""" color: ColorField = InputField(default=ColorField(r=0, g=0, b=0, a=255), description="The color value") def invoke(self, context: InvocationContext) -> ColorOutput: return ColorOutput(color=self.color) # endregion # region Conditioning @invocation_output("mask_output") class MaskOutput(BaseInvocationOutput): """A torch mask tensor.""" mask: TensorField = OutputField(description="The mask.") width: int = OutputField(description="The width of the mask in pixels.") height: int = OutputField(description="The height of the mask in pixels.") @invocation_output("conditioning_output") class ConditioningOutput(BaseInvocationOutput): """Base class for nodes that output a single conditioning tensor""" conditioning: ConditioningField = OutputField(description=FieldDescriptions.cond) @classmethod def build(cls, conditioning_name: str) -> "ConditioningOutput": return cls(conditioning=ConditioningField(conditioning_name=conditioning_name)) @invocation_output("conditioning_collection_output") class ConditioningCollectionOutput(BaseInvocationOutput): """Base class for nodes that output a collection of conditioning tensors""" collection: list[ConditioningField] = OutputField( description="The output conditioning tensors", ) @invocation( "conditioning", title="Conditioning Primitive", tags=["primitives", "conditioning"], category="primitives", version="1.0.1", ) class ConditioningInvocation(BaseInvocation): """A conditioning tensor primitive value""" conditioning: ConditioningField = InputField(description=FieldDescriptions.cond, input=Input.Connection) def invoke(self, context: InvocationContext) -> ConditioningOutput: return ConditioningOutput(conditioning=self.conditioning) @invocation( "conditioning_collection", title="Conditioning Collection Primitive", tags=["primitives", "conditioning", "collection"], category="primitives", version="1.0.2", ) class ConditioningCollectionInvocation(BaseInvocation): """A collection of conditioning tensor primitive values""" collection: list[ConditioningField] = InputField( default=[], description="The collection of conditioning tensors", ) def invoke(self, context: InvocationContext) -> ConditioningCollectionOutput: return ConditioningCollectionOutput(collection=self.collection) # endregion # region BoundingBox @invocation_output("bounding_box_output") class BoundingBoxOutput(BaseInvocationOutput): """Base class for nodes that output a single bounding box""" bounding_box: BoundingBoxField = OutputField(description="The output bounding box.") @invocation_output("bounding_box_collection_output") class BoundingBoxCollectionOutput(BaseInvocationOutput): """Base class for nodes that output a collection of bounding boxes""" collection: list[BoundingBoxField] = OutputField(description="The output bounding boxes.", title="Bounding Boxes") @invocation( "bounding_box", title="Bounding Box", tags=["primitives", "segmentation", "collection", "bounding box"], category="primitives", version="1.0.0", ) class BoundingBoxInvocation(BaseInvocation): """Create a bounding box manually by supplying box coordinates""" x_min: int = InputField(default=0, description="x-coordinate of the bounding box's top left vertex", title="X1") y_min: int = InputField(default=0, description="y-coordinate of the bounding box's top left vertex", title="Y1") x_max: int = InputField(default=0, description="x-coordinate of the bounding box's bottom right vertex", title="X2") y_max: int = InputField(default=0, description="y-coordinate of the bounding box's bottom right vertex", title="Y2") def invoke(self, context: InvocationContext) -> BoundingBoxOutput: bounding_box = BoundingBoxField(x_min=self.x_min, y_min=self.y_min, x_max=self.x_max, y_max=self.y_max) return BoundingBoxOutput(bounding_box=bounding_box) # endregion